78
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In addition to physical barriers, neutrophils are considered a part of the first line of immune defense. They can be found in the bloodstream, with a lifespan of 6–8 h, and in tissue, where they can last up to 7 days. The mechanisms that neutrophils utilize for host defense are phagocytosis, degranulation, cytokine production, and, the most recently described, neutrophil extracellular trap (NET) production. NETs are DNA structures released due to chromatin decondensation and spreading, and they thus occupy three to five times the volume of condensed chromatin. Several proteins adhere to NETs, including histones and over 30 components of primary and secondary granules, among them components with bactericidal activity such as elastase, myeloperoxidase, cathepsin G, lactoferrin, pentraxin 3, gelatinase, proteinase 3, LL37, peptidoglycan-binding proteins, and others with bactericidal activity able to destroy virulence factors. Three models for NETosis are known to date. (a) Suicidal NETosis, with a duration of 2–4 h, is the best described model. (b) In vital NETosis with nuclear DNA release, neutrophils release NETs without exhibiting loss of nuclear or plasma membrane within 5–60 min, and it is independent of reactive oxygen species (ROS) and the Raf/MERK/ERK pathway. (c) The final type is vital NETosis with release of mitochondrial DNA that is dependent on ROS and produced after stimuli with GM-CSF and lipopolysaccharide. Recent research has revealed neutrophils as more sophisticated immune cells that are able to precisely regulate their granular enzymes release by ion fluxes and can release immunomodulatory cytokines and chemokines that interact with various components of the immune system. Therefore, they can play a key role in autoimmunity and in autoinflammatory and metabolic diseases. In this review, we intend to show the two roles played by neutrophils: as a first line of defense against microorganisms and as a contributor to the pathogenesis of various illnesses, such as autoimmune, autoinflammatory, and metabolic diseases.

          Related collections

          Most cited references215

          • Record: found
          • Abstract: found
          • Article: not found

          Neutrophil extracellular traps kill bacteria.

          Neutrophils engulf and kill bacteria when their antimicrobial granules fuse with the phagosome. Here, we describe that, upon activation, neutrophils release granule proteins and chromatin that together form extracellular fibers that bind Gram-positive and -negative bacteria. These neutrophil extracellular traps (NETs) degrade virulence factors and kill bacteria. NETs are abundant in vivo in experimental dysentery and spontaneous human appendicitis, two examples of acute inflammation. NETs appear to be a form of innate response that binds microorganisms, prevents them from spreading, and ensures a high local concentration of antimicrobial agents to degrade virulence factors and kill bacteria.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Neutrophil recruitment and function in health and inflammation.

            Neutrophils have traditionally been thought of as simple foot soldiers of the innate immune system with a restricted set of pro-inflammatory functions. More recently, it has become apparent that neutrophils are, in fact, complex cells capable of a vast array of specialized functions. Although neutrophils are undoubtedly major effectors of acute inflammation, several lines of evidence indicate that they also contribute to chronic inflammatory conditions and adaptive immune responses. Here, we discuss the key features of the life of a neutrophil, from its release from bone marrow to its death. We discuss the possible existence of different neutrophil subsets and their putative anti-inflammatory roles. We focus on how neutrophils are recruited to infected or injured tissues and describe differences in neutrophil recruitment between different tissues. Finally, we explain the mechanisms that are used by neutrophils to promote protective or pathological immune responses at different sites.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood.

              It has been known for many years that neutrophils and platelets participate in the pathogenesis of severe sepsis, but the inter-relationship between these players is completely unknown. We report several cellular events that led to enhanced trapping of bacteria in blood vessels: platelet TLR4 detected TLR4 ligands in blood and induced platelet binding to adherent neutrophils. This led to robust neutrophil activation and formation of neutrophil extracellular traps (NETs). Plasma from severely septic humans also induced TLR4-dependent platelet-neutrophil interactions, leading to the production of NETs. The NETs retained their integrity under flow conditions and ensnared bacteria within the vasculature. The entire event occurred primarily in the liver sinusoids and pulmonary capillaries, where NETs have the greatest capacity for bacterial trapping. We propose that platelet TLR4 is a threshold switch for this new bacterial trapping mechanism in severe sepsis.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/408421
                URI : http://frontiersin.org/people/u/392676
                URI : http://frontiersin.org/people/u/392201
                URI : http://frontiersin.org/people/u/392441
                URI : http://frontiersin.org/people/u/408413
                URI : http://frontiersin.org/people/u/86971
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                06 February 2017
                2017
                : 8
                : 81
                Affiliations
                [1] 1Physiology, Universidad de Guadalajara , Guadalajara, Mexico
                Author notes

                Edited by: Anna Rubartelli, Azienda Ospedaliera Universitaria San Martino IST, Italy

                Reviewed by: Silvano Sozzani, University of Brescia, Italy; Norma Maugeri, San Raffaele Scientific Institute, Italy

                *Correspondence: Mary Fafutis-Morris, mfafutis@ 123456gmail.com

                Specialty section: This article was submitted to Inflammation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00081
                5292617
                28220120
                542ad023-13bb-4fb2-a72c-d1291b51c359
                Copyright © 2017 Delgado-Rizo, Martínez-Guzmán, Iñiguez-Gutierrez, García-Orozco, Alvarado-Navarro and Fafutis-Morris.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 November 2016
                : 17 January 2017
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 209, Pages: 20, Words: 15777
                Categories
                Immunology
                Review

                Immunology
                nets,infectious diseases,autoinmmune diseases,autoinflammatory diseases,metabolic diseases

                Comments

                Comment on this article