20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The science behind autologous fat grafting

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Adipose grafting has undergone significant changes over time. Many different techniques have been followed by trying to improve the quality of the lipoaspirate and the survival of the fat graft after implantation.

          Material and methods

          The purpose of this review is to analyse the historical evolution of the surgical harvesting and implant technique, describing the changes that have brought significant improvements, revolutionizing the aesthetic and functional results obtainable.

          Results

          A standard fat grafting technique is commonly performed in three stages: harvesting of adipose tissue from a suitable donor site; processing of the lipoaspirate to eliminate cellular debris, acellular oil and excess of infiltrated solution, reinjection of the purified adipose tissue. The most widely used surgical technique was described by Coleman. He modified and corrected the methods and results of his predecessors and proposed an atraumatic protocol for the treatment of adipose tissue.

          He reported that the key to successful fat grafting lies in the technique. In addition, he noticed that adipose tissue was not only a good filler, but improved the quality of the skin. In fact, fat grafts demonstrated to have not only dermal filler properties but also regenerative potential owing to the presence of stem cells in fat tissue.

          Conclusion

          Adipose tissue, actually, is the closest to the ideal filler because it is readily available; easily obtainable, with low donor-site morbidity; repeatable; inexpensive; versatile; and biocompatible. There is an abundance of literature supporting the efficacy of fat grafting in both aesthetic and reconstructive cases. Recent studies have shown the utility of adipose-derived stem cells in the improvement of wound healing, describing their ability to regenerate soft tissues and their remodelling capacity provided by their unique cytokine and growth factor profiles.

          Despite ongoing concerns about survival and longevity of fat grafts after implantation and unpredictability of long-term outcome, fat has been successfully used as a filler in many differ clinic situation.

          Highlights

          • This review analyse the historical evolution of the surgical harvesting and implant technique.

          • It focuses on the technical improvement to obtain a better fat grafting survival.

          • Adipose derived stem cells and their regenerative properties are also reported.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Adipose tissue derived stem cells secretome: soluble factors and their roles in regenerative medicine.

          Stem cells have been long looked at as possible therapeutic vehicles for different health related problems. Among the different existing stem cell populations, Adipose- derived Stem Cells (ASCs) have been gathering attention in the last 10 years. When compared to other stem cells populations and sources, ASCs can be easily isolated while providing simultaneously higher yields upon the processing of adipose tissue. Similar to other stem cell populations, it was initially thought that the main potential of ASCs for regenerative medicine approaches was intimately related to their differentiation capability. Although this is true, there has been an increasing body of literature describing the trophic effects of ASCs on the protection, survival and differentiation of variety of endogenous cells/tissues. Moreover, they have also shown to possess an immunomodulatory character. This effect is closely related to the ASCs' secretome and the soluble factors found within it. Molecules such as hepatocyte growth factor (HGF), granulocyte and macrophage colony stimulating factors, interleukins (ILs) 6, 7, 8 and 11, tumor necrosis factor-alpha (TNF-alpha), vascular endothelial growth factor (VEGF), brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), adipokines and others have been identified within the ASCs' secretome. Due to its importance regarding future applications for the field of regenerative medicine, we aim, in the present review, to make a comprehensive analysis of the literature relating to the ASCs' secretome and its relevance to the immune and central nervous system, vascularization and cardiac regeneration. The concluding section will highlight some of the major challenges that remain before ASCs can be used for future clinical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue.

            Human mesenchymal stem cells (MSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. This differentiation potential makes MSC excellent candidates for cell-based tissue engineering. In this study, we have examined phenotypes and gene expression profile of the human adipose tissue-derived stromal cells (ATSC) in the undifferentiated states, and compared with that of bone marrow stromal cells (BMSC). ATSC were enzymatically released from adipose tissues from adult human donors and were expanded in monolayer with serial passages at confluence. BMSC were harvested from the metaphysis of adult human femur. Flowcytometric analysis showed that ATSC have a marker expression that is similar to that of BMSC. ATSC expressed CD29, CD44, CD90, CD105 and were absent for HLA-DR and c-kit expression. Under appropriate culture conditions, MSC were induced to differentiate to the osteoblast, adipocyte, and chondrogenic lineages. ATSC were superior to BMSC in respect to maintenance of proliferating ability, and microarray analysis of gene expression revealed differentially expressed genes between ATSC and BMSC. The proliferating ability and differentiation potential of ATSC were variable according to the culture condition. The similarities of the phenotypes and the gene expression profiles between ATSC and BMSC could have broad implications for human tissue engineering. Copyright 2004 S. Karger AG, Basel
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enrichment of autologous fat grafts with ex-vivo expanded adipose tissue-derived stem cells for graft survival: a randomised placebo-controlled trial.

              Autologous fat grafting is increasingly used in reconstructive surgery. However, resorption rates ranging from 25% to 80% have been reported. Therefore, methods to increase graft viability are needed. Here, we report the results of a triple-blind, placebo-controlled trial to compare the survival of fat grafts enriched with autologous adipose-derived stem cells (ASCs) versus non-enriched fat grafts. Healthy participants underwent two liposuctions taken 14 days apart: one for ASC isolation and ex-vivo expansion, and another for the preparation of fat grafts. Two purified fat grafts (30 mL each) taken from the second liposuction were prepared for each participant. One graft was enriched with ASCs (20 × 10(6) cells per mL fat), and another graft without ASC enrichment served as a control. The fat grafts were injected subcutaneously as a bolus to the posterior part of the right and left upper arm according to the randomisation sequence. The volumes of injected fat grafts were measured by MRI immediately after injection and after 121 days before surgical removal. The primary goal was to compare the residual graft volumes of ASC-enriched grafts with those of control grafts. This study is registered at www.clinicaltrialsregister.eu, number 2010-023006-12. 13 participants were enrolled, three of whom were excluded. Compared with the control grafts, the ASC-enriched fat grafts had significantly higher residual volumes: 23·00 (95% CI 20·57-25·43) cm(3) versus 4·66 (3·16-6·16) cm(3) for the controls, corresponding to 80·9% (76·6-85·2) versus 16·3% (11·1-21·4) of the initial volumes, respectively (p<0·0001). The difference between the groups was 18·34 (95% CI 15·70-20·98) cm(3), equivalent to 64·6% (57·1-72·1; p<0·0001). No serious adverse events were noted. The procedure of ASC-enriched fat grafting had excellent feasibility and safety. These promising results add significantly to the prospect of stem cell use in clinical settings, and indicate that ASC graft enrichment could render lipofilling a reliable alternative to major tissue augmentation, such as breast surgery, with allogeneic material or major flap surgery. Danish Cancer Society, Centre of Head and Orthopaedics Rigshospitalet, and Moalem Weitemeyer Bendtsen. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Ann Med Surg (Lond)
                Ann Med Surg (Lond)
                Annals of Medicine and Surgery
                Elsevier
                2049-0801
                10 November 2017
                December 2017
                10 November 2017
                : 24
                : 65-73
                Affiliations
                [a ]Department of Medicine and Surgery, Plastic Surgery Section, University of Parma, Italy
                [b ]Cutaneous, Mini-invasive, Regenerative and Plastic Surgery Unit, Parma University Hospital, Parma, Italy
                Author notes
                []Corresponding author. Department of Medicine and Surgery, Plastic Surgery Section, University of Parma, Italy.Department of Medicine and SurgeryPlastic Surgery SectionUniversity of ParmaItaly elisa.bellini@ 123456outlook.it
                Article
                S2049-0801(17)30394-1
                10.1016/j.amsu.2017.11.001
                5694962
                29188051
                54508261-6bd0-4b00-a66e-38afa8e963f3
                © 2017 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 4 August 2017
                : 10 October 2017
                : 1 November 2017
                Categories
                Review Article

                fat grafting,adipose derived stem cell,lipofilling
                fat grafting, adipose derived stem cell, lipofilling

                Comments

                Comment on this article