7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Contemporary perspectives on the ecological impacts of invasive freshwater fishes

      1
      Journal of Fish Biology
      Wiley

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introductions of non‐native freshwater fish continue to increase globally, although only a small proportion of these introductions will result in an invasion. These invasive populations can cause ecological impacts in the receiving ecosystem through processes including increased competition and predation pressure, genetic introgression and the transmission of non‐native pathogens. Definitions of ecological impact emphasize that shifts in the strength of these processes are insufficient for characterizing impact alone and, instead, must be associated with a quantifiable decline of biological and/or genetic diversity and lead to a measurable loss of diversity or change in ecosystem functioning. Assessments of ecological impact should thus consider the multiple processes and effects that potentially occur from invasive fish populations where, for example, impacts of invasive common carp Cyprinus carpio populations are through a combination of bottom‐up and top‐down processes that, in entirety, cause shifts in lake stable states and decreased species richness and/or abundances in the biotic communities. Such far‐reaching ecological impacts also align to contemporary definitions of ecosystem collapse, given they involve substantial and persistent declines in biodiversity and ecosystem functions that cannot be recovered unaided. Thus, while not all introduced freshwater fishes will become invasive, those species that do develop invasive populations can cause substantial ecological impacts, where some of the impacts on biodiversity and ecosystem functioning might be sufficiently harmful to be considered as contributing to ecosystem collapse.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: found
          • Article: not found

          Freshwater biodiversity: importance, threats, status and conservation challenges.

          Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hybridization, introgression, and the nature of species boundaries.

            Species can be defined as populations that are diagnosably distinct, reproductively isolated, cohesive, or exclusive groups of organisms. Boundaries between species in sympatry are maintained by intrinsic barriers to gene exchange; these boundaries may not be uniform in space, in time, or across the genome. Here, we explore the nature of the species boundary, defined as the phenotypes/genes/genome regions that remain differentiated in the face of potential hybridization and introgression. We emphasize that species boundaries are semipermeable, with permeability (gene exchange) being a function of genome region. The early evidence for semipermeable species boundaries came from data on differential introgression in hybrid zones. This "genic view" of species was common in the hybrid zone literature even when few molecular markers were available to characterize genome-wide patterns of variation. Now, molecular tools allow detailed characterization of differentiation between diverging lineages and patterns of variation across natural hybrid zones, but the questions being asked by evolutionary biologists have remained much the same. Recent data (from DNA sequences and genotypes) reinforce earlier conclusions about the semipermeable nature of most species boundaries. However, debate persists over the nature and extent of genome divergence that accompanies speciation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Bending the Curve of Global Freshwater Biodiversity Loss: An Emergency Recovery Plan

              Abstract Despite their limited spatial extent, freshwater ecosystems host remarkable biodiversity, including one-third of all vertebrate species. This biodiversity is declining dramatically: Globally, wetlands are vanishing three times faster than forests, and freshwater vertebrate populations have fallen more than twice as steeply as terrestrial or marine populations. Threats to freshwater biodiversity are well documented but coordinated action to reverse the decline is lacking. We present an Emergency Recovery Plan to bend the curve of freshwater biodiversity loss. Priority actions include accelerating implementation of environmental flows; improving water quality; protecting and restoring critical habitats; managing the exploitation of freshwater ecosystem resources, especially species and riverine aggregates; preventing and controlling nonnative species invasions; and safeguarding and restoring river connectivity. We recommend adjustments to targets and indicators for the Convention on Biological Diversity and the Sustainable Development Goals and roles for national and international state and nonstate actors.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                Journal of Fish Biology
                Journal of Fish Biology
                Wiley
                0022-1112
                1095-8649
                October 2023
                November 2022
                October 2023
                : 103
                : 4
                : 752-764
                Affiliations
                [1 ] Department of Life and Environmental Sciences, Faculty of Science and Technology Bournemouth University Poole UK
                Article
                10.1111/jfb.15240
                36207758
                5455c392-c599-4c6d-b6db-af39d24912f2
                © 2023

                http://creativecommons.org/licenses/by-nc/4.0/

                History

                Comments

                Comment on this article