15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Phenylbutyrate—a pan-HDAC inhibitor—suppresses proliferation of glioblastoma LN-229 cell line

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Phenylbutyrate (PBA) is a histone deacetylase inhibitor known for inducing differentiation, cell cycle arrest, and apoptosis in various cancer cells. However, the effects of PBA seem to be very cell-type-specific and sometimes limited exclusively to a particular cell line. Here, we provided novel information concerning cellular effects of PBA in LN-229 and LN-18 glioblastoma cell lines which have not been previously evaluated in context of PBA exposure. We found that LN-18 cells were PBA-insensitive even at high concentrations of PBA. In contrary, in LN-229 cells, 5 and 15 mmol/L PBA inhibited cell growth and proliferation mainly by causing prominent changes in cell morphology and promoting S- and G2/M-dependent cell cycle arrest. Moreover, we observed nearly a 3-fold increase in apoptosis of LN-229 cells treated with 15 mmol/L PBA, in comparison to control. Furthermore, PBA was found to up-regulate the expression of p21 whereas p53 expression level remained unchanged. We also showed that PBA down-regulated the expression of the anti-apoptotic genes Bcl-2/ Bcl-X L , however without affecting the expression of pro-apoptotic Bax and Bim. Taken together, our results suggest that PBA might potentially be considered as an agent slowing-down the progress of glioblastoma; however, further analyses are still needed to comprehensively resolve the nature of its activity in this type of cancer.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          The role of histone deacetylases (HDACs) in human cancer.

          The balance of histone acetylation and deacetylation is an epigenetic layer with a critical role in the regulation of gene expression. Histone acetylation induced by histone acetyl transferases (HATs) is associated with gene transcription, while histone hypoacetylation induced by histone deacetylase (HDAC) activity is associated with gene silencing. Altered expression and mutations of genes that encode HDACs have been linked to tumor development since they both induce the aberrant transcription of key genes regulating important cellular functions such as cell proliferation, cell-cycle regulation and apoptosis. Thus, HDACs are among the most promising therapeutic targets for cancer treatment, and they have inspired researchers to study and develop HDAC inhibitors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The role of the cyclin-dependent kinase inhibitor p21 in apoptosis.

            Cancer develops when the balance between cell proliferation and cell death is disrupted, and the ensuing aberrant proliferation leads to tumor growth. The cyclin-dependent kinase inhibitor p21 is induced by both p53-dependent and -independent mechanisms following stress, and induction of p21 may cause cell cycle arrest. As a proliferation inhibitor, p21 is poised to play an important role in preventing tumor development. This notion is supported by data indicating that p21-null mice are more prone to spontaneous and induced tumorigenesis, and p21 synergizes with other tumor suppressors to protect against tumor progression in mice. However, a number of recent studies have pointed out that in addition to being an inhibitor of cell proliferation, p21 acts as an inhibitor of apoptosis in a number of systems, and this may counteract its tumor-suppressive functions as a growth inhibitor. In the current review, we discuss the role of p21 in regulating cell death and the potential relevance of its expression in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonhistone protein acetylation as cancer therapy targets.

              Acetylation and deacetylation are counteracting, post-translational modifications that affect a large number of histone and nonhistone proteins. The significance of histone acetylation in the modification of chromatin structure and dynamics, and thereby gene transcription regulation, has been well recognized. A steadily growing number of nonhistone proteins have been identified as acetylation targets and reversible lysine acetylation in these proteins plays an important role(s) in the regulation of mRNA stability, protein localization and degradation, and protein-protein and protein-DNA interactions. The recruitment of histone acetyltransferases (HATs) and histone deacetylases (HDACs) to the transcriptional machinery is a key element in the dynamic regulation of genes controlling cellular proliferation, differentiation and apoptosis. Many nonhistone proteins targeted by acetylation are the products of oncogenes or tumor-suppressor genes and are directly involved in tumorigenesis, tumor progression and metastasis. Aberrant activity of HDACs has been documented in several types of cancers and HDAC inhibitors (HDACi) have been employed for therapeutic purposes. Here we review the published literature in this field and provide updated information on the regulation and function of nonhistone protein acetylation. While concentrating on the molecular mechanism and pathways involved in the addition and removal of the acetyl moiety, therapeutic modalities of HDACi are also discussed.
                Bookmark

                Author and article information

                Contributors
                (48.85) 748 56 90 , mkusaczuk@wp.pl
                Journal
                Tumour Biol
                Tumour Biol
                Tumour Biology
                Springer Netherlands (Dordrecht )
                1010-4283
                1423-0380
                11 August 2015
                11 August 2015
                January 2016
                : 37
                : 1
                : 931-942
                Affiliations
                [ ]Department of Pharmaceutical Biochemistry, Medical University of Białystok, Mickiewicza 2A, 15-222 Białystok, Poland
                [ ]Department of Microbiology, Institute of Biology, University of Białystok, Białystok, Poland
                Article
                3781
                10.1007/s13277-015-3781-8
                4841856
                26260271
                545990f3-5299-4d33-bb48-8e71d0e66504
                © The Author(s) 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 14 May 2015
                : 8 July 2015
                Categories
                Original Article
                Custom metadata
                © International Society of Oncology and BioMarkers (ISOBM) 2016

                Oncology & Radiotherapy
                apoptosis,cell cycle,glioblastoma,histone deacetylase inhibitors,phenylbutyrate

                Comments

                Comment on this article