16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Idiosyncratic Responses of High Arctic Plants to Changing Snow Regimes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Arctic is one of the ecosystems most affected by climate change; in particular, winter temperatures and precipitation are predicted to increase with consequent changes to snow cover depth and duration. Whether the snow-free period will be shortened or prolonged depends on the extent and temporal patterns of the temperature and precipitation rise; resulting changes will likely affect plant growth with cascading effects throughout the ecosystem. We experimentally manipulated snow regimes using snow fences and shoveling and assessed aboveground size of eight common high arctic plant species weekly throughout the summer. We demonstrated that plant growth responded to snow regime, and that air temperature sum during the snow free period was the best predictor for plant size. The majority of our studied species showed periodic growth; increases in plant size stopped after certain cumulative temperatures were obtained. Plants in early snow-free treatments without additional spring warming were smaller than controls. Response to deeper snow with later melt-out varied between species and categorizing responses by growth forms or habitat associations did not reveal generic trends. We therefore stress the importance of examining responses at the species level, since generalized predictions of aboveground growth responses to changing snow regimes cannot be made.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: not found

          Late snowmelt delays plant development and results in lower reproductive success in the High Arctic.

          In tundra areas where the growing season is short, any delay in the start of summer may have a considerable effect on plant development, growth and reproductive success. Climate models suggest long-term changes in winter precipitation in the Arctic, which may lead to deeper snow cover and a resultant delay in date of snow melt. In this paper, we investigated the role of snow depth and melt out date on the phenological development and reproductive success of vascular plants in Adventdalen, Svalbard (78° 10'N, 16° 06'E). Effects of natural variations in snow accumulation were demonstrated using two vegetation types (snow depth: meadow 21 cm, heath 32 cm), and fences were used to experimentally increase snow depth by over 1m. Phenological delay was greatest directly after snowmelt in the earlier phenological phases, and had the largest effect on the early development of those species which normally green-up early (i.e. Dryas, Papaver, Salix, Saxifraga). Compressed growing seasons and length of the reproductive period led to a reduced reproductive success in some of the study species. There were fewer flowers, fewer plots with dispersing seeds, and lower germination rates. This can have consequences for plant establishment and community composition in the long-term. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Changes in vegetation in northern Alaska under scenarios of climate change, 2003-2100: implications for climate feedbacks.

            Assessing potential future changes in arctic and boreal plant species productivity, ecosystem composition, and canopy complexity is essential for understanding environmental responses under expected altered climate forcing. We examined potential changes in the dominant plant functional types (PFTs) of the sedge tundra, shrub tundra, and boreal forest ecosystems in ecotonal northern Alaska, USA, for the years 2003-2100. We compared energy feedbacks associated with increases in biomass to energy feedbacks associated with changes in the duration of the snow-free season. We based our simulations on nine input climate scenarios from the Intergovernmental Panel on Climate Change (IPCC) and a new version of the Terrestrial Ecosystem Model (TEM) that incorporates biogeochemistry, vegetation dynamics for multiple PFTs (e.g., trees, shrubs, grasses, sedges, mosses), multiple vegetation pools, and soil thermal regimes. We found mean increases in net primary productivity (NPP) in all PFTs. Most notably, birch (Betula spp.) in the shrub tundra showed increases that were at least three times larger than any other PFT. Increases in NPP were positively related to increases in growing-season length in the sedge tundra, but PFTs in boreal forest and shrub tundra showed a significant response to changes in light availability as well as growing-season length. Significant NPP responses to changes in vegetation uptake of nitrogen by PFT indicated that some PFTs were better competitors for nitrogen than other PFTs. While NPP increased, heterotrophic respiration (RH) also increased, resulting in decreases or no change in net ecosystem carbon uptake. Greater aboveground biomass from increased NPP produced a decrease in summer albedo, greater regional heat absorption (0.34 +/- 0.23 W x m(-2) x 10 yr(-1) [mean +/- SD]), and a positive feedback to climate warming. However, the decrease in albedo due to a shorter snow season (-5.1 +/- 1.6 d/10 yr) resulted in much greater regional heat absorption (3.3 +/- 1.24 W x m(-2) x 10 yr(-1)) than that associated with increases in vegetation. Through quantifying feedbacks associated with changes in vegetation and those associated with changes in the snow season length, we can reach a more integrated understanding of the manner in which climate change may impact interactions between high-latitude ecosystems and the climate system.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment

              In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between −2 and −14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 −4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 −7 and −5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around −4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                11 February 2014
                : 9
                : 2
                : e86281
                Affiliations
                [1 ]Department of Conservation Biology, University of Vienna, Vienna, Vienna, Austria
                [2 ]Institute for Arctic and Marine Biology, University of Tromsø, Tromsø, Troms, Norway
                [3 ]Institute of Interdisciplinary Mountain Research, University of Vienna, Vienna, Vienna, Austria
                [4 ]Department of Arctic Biology, University Center in Svalbard, Longyearbyen, Svalbard, Norway
                [5 ]Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Capital Region of Denmark, Denmark
                [6 ]Vienna Institute for Nature Conservation and Analyses, Vienna, Vienna, Austria
                WSL Institute for Snow and Avalanche Research SLF, Switzerland
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EJC. Performed the experiments: SBR EJC PRS. Analyzed the data: SBR PRS SD EJC. Contributed reagents/materials/analysis tools: EJC PRS SD SBR. Wrote the paper: SBR EJC PRS SD.

                Article
                PONE-D-13-22070
                10.1371/journal.pone.0086281
                3921108
                24523859
                545aac61-e707-48d6-89d6-9eed564c4f96
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 May 2013
                : 12 December 2013
                Page count
                Pages: 10
                Funding
                This work was supported by the following: a) 1700€ from the ‘Österreichische Gesellschaft für Polarforschung’ and the grant is named “Julius-Payer-Stipendium.” It was dedicated to Rumpf as support for travel expenses and field equipment (as well as clothing, etc.). b) 3 months long 550€/month from the University of Vienna for Rumpf's living costs. The grant is called “short-term grant abroad” and is dedicated for the field work of master projects abroad ( www.univie.ac.at). c) University of Tromsø, uit.no. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Developmental Biology
                Plant Growth and Development
                Ecology
                Community Ecology
                Community Structure
                Species Interactions
                Ecological Environments
                Terrestrial Environments
                Biogeography
                Global Change Ecology
                Plant Ecology
                Plant Science
                Plant Ecology
                Plant Growth and Development
                Earth Sciences
                Atmospheric Science
                Climatology
                Climate Change

                Uncategorized
                Uncategorized

                Comments

                Comment on this article