52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Akt-mTOR axis is a pivotal regulator of eccentric hypertrophy during volume overload

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The heart has two major modalities of hypertrophy in response to hemodynamic loads: concentric and eccentric hypertrophy caused by pressure and volume overload (VO), respectively. However, the molecular mechanism of eccentric hypertrophy remains poorly understood. Here we demonstrate that the Akt-mammalian target of rapamycin (mTOR) axis is a pivotal regulator of eccentric hypertrophy during VO. While mTOR in the heart was activated in a left ventricular end-diastolic pressure (LVEDP)-dependent manner, mTOR inhibition suppressed eccentric hypertrophy and induced cardiac atrophy even under VO. Notably, Akt was ubiquitinated and phosphorylated in response to VO, and blocking the recruitment of Akt to the membrane completely abolished mTOR activation. Various growth factors were upregulated during VO, suggesting that these might be involved in Akt-mTOR activation. Furthermore, the rate of eccentric hypertrophy progression was proportional to mTOR activity, which allowed accurate estimation of eccentric hypertrophy by time-integration of mTOR activity. These results suggested that the Akt-mTOR axis plays a pivotal role in eccentric hypertrophy, and mTOR activity quantitatively determines the rate of eccentric hypertrophy progression. As eccentric hypertrophy is an inherent system of the heart for regulating cardiac output and LVEDP, our findings provide a new mechanistic insight into the adaptive mechanism of the heart.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo.

          Skeletal muscles adapt to changes in their workload by regulating fibre size by unknown mechanisms. The roles of two signalling pathways implicated in muscle hypertrophy on the basis of findings in vitro, Akt/mTOR (mammalian target of rapamycin) and calcineurin/NFAT (nuclear factor of activated T cells), were investigated in several models of skeletal muscle hypertrophy and atrophy in vivo. The Akt/mTOR pathway was upregulated during hypertrophy and downregulated during muscle atrophy. Furthermore, rapamycin, a selective blocker of mTOR, blocked hypertrophy in all models tested, without causing atrophy in control muscles. In contrast, the calcineurin pathway was not activated during hypertrophy in vivo, and inhibitors of calcineurin, cyclosporin A and FK506 did not blunt hypertrophy. Finally, genetic activation of the Akt/mTOR pathway was sufficient to cause hypertrophy and prevent atrophy in vivo, whereas genetic blockade of this pathway blocked hypertrophy in vivo. We conclude that the activation of the Akt/mTOR pathway and its downstream targets, p70S6K and PHAS-1/4E-BP1, is requisitely involved in regulating skeletal muscle fibre size, and that activation of the Akt/mTOR pathway can oppose muscle atrophy induced by disuse.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The E3 ligase TRAF6 regulates Akt ubiquitination and activation.

            Akt signaling plays a central role in many biological functions, such as cell proliferation and apoptosis. Because Akt (also known as protein kinase B) resides primarily in the cytosol, it is not known how these signaling molecules are recruited to the plasma membrane and subsequently activated by growth factor stimuli. We found that the protein kinase Akt undergoes lysine-63 chain ubiquitination, which is important for Akt membrane localization and phosphorylation. TRAF6 was found to be a direct E3 ligase for Akt and was essential for Akt ubiquitination, membrane recruitment, and phosphorylation upon growth-factor stimulation. The human cancer-associated Akt mutant displayed an increase in Akt ubiquitination, in turn contributing to the enhancement of Akt membrane localization and phosphorylation. Thus, Akt ubiquitination is an important step for oncogenic Akt activation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The mTOR pathway in the control of protein synthesis.

              Signaling through mammalian target of rapamycin (mTOR) is activated by amino acids, insulin, and growth factors, and impaired by nutrient or energy deficiency. mTOR plays key roles in cell physiology. mTOR regulates numerous components involved in protein synthesis, including initiation and elongation factors, and the biogenesis of ribosomes themselves.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                30 October 2015
                2015
                : 5
                : 15881
                Affiliations
                [1 ]Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
                Author notes
                Article
                srep15881
                10.1038/srep15881
                4626834
                26515499
                5463048a-7c02-4129-aaa9-f12701564a70
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 10 June 2015
                : 01 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article