16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The role of orexin-1 receptor signaling in demand for the opioid fentanyl

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The orexin system is a potential treatment target for drug addiction. Orexin-1 receptor (OxR1) antagonism reduces demand for cocaine and remifentanil, indicating that orexin-based therapies may reduce demand for many classes of abused drugs. However, pharmacokinetics vary greatly among opioids and it is unclear if OxR1 antagonism would reduce demand for all opioids, particularly ones with high abuse liability. Here, we established a behavioral economics (BE) procedure to assess the effects of OxR1 antagonism on demand for the highly abused opioid fentanyl. We also investigated the utility of our procedure to predict OxR1 antagonism efficacy and relapse propensity. Demand parameters α (demand elasticity or price sensitivity of consumption, an inverse measure of drug motivation) and Q o (drug consumption at null cost) were assessed. The OxR1 antagonist SB-334867 (SB) decreased motivation (increased α ) for fentanyl without affecting Q o . Baseline α values predicted SB efficacy, such that SB was most effective at reducing motivation (increasing α ) in highly motivated rats. Baseline α values predicted the amount of cued reinstatement of fentanyl seeking; this reinstatement behavior was attenuated by SB administration. These results highlight the promise of the orexin system as a treatment target for opioid addiction and emphasize the usefulness of BE procedures in the study of opioid abuse.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Orexins and Orexin Receptors: A Family of Hypothalamic Neuropeptides and G Protein-Coupled Receptors that Regulate Feeding Behavior

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Arousal and reward: a dichotomy in orexin function.

            The orexins (or hypocretins) are neuropeptide transmitters made exclusively in hypothalamic neurons that have extensive CNS projections. Previous studies reported that this system is most strongly associated with feeding, arousal and the maintenance of waking. We review here recent studies that reveal a novel and important role for the orexin/hypocretin neuronal system in reward processing and addiction. We propose that the current evidence indicates a dichotomy in orexin function, such that orexin neurons in the lateral hypothalamus regulate reward processing for both food and abused drugs, whereas those in the perifornical and dorsomedial hypothalamus regulate arousal and response to stress. Evidence also indicates roles for lateral hypothalamus orexin neurons and ventral tegmental orexin receptors in reward-based learning and memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role for hypocretin in mediating stress-induced reinstatement of cocaine-seeking behavior.

              Hypocretin-1 and -2 (Hcrt-1 and Hcrt-2), also referred to as orexin-A and -B, are neuropeptides synthesized by a few thousand neurons in the lateral hypothalamus. Hypocretin-containing neurons project throughout the brain, with a prominent input to basal forebrain structures involved in motivation, reward, and stress. However, the role of hypocretins in addiction-related behaviors remains largely unexplored. Here we show that intracerebroventricular infusions of Hcrt-1 lead to a dose-related reinstatement of cocaine seeking without altering cocaine intake in rats. Hcrt-1 also dramatically elevates intracranial self-stimulation thresholds, indicating that, unlike treatments with reinforcing properties such as cocaine, Hcrt-1 negatively regulates the activity of brain reward circuitries. Hypocretin-induced reinstatement of cocaine seeking was prevented by blockade of noradrenergic and corticotropin-releasing factor systems, suggesting that Hcrt-1 reinstated drug seeking through induction of a stress-like state. Consistent with this interpretation, the selective Hcrt-1 receptor antagonist SB-334867 blocked footshock-induced reinstatement of previously extinguished cocaine-seeking behavior. These findings reveal a previously unidentified role for hypocretins in driving drug seeking through activation of stress pathways in the brain.
                Bookmark

                Author and article information

                Journal
                Neuropsychopharmacology
                Neuropsychopharmacol.
                Springer Science and Business Media LLC
                0893-133X
                1740-634X
                May 21 2019
                Article
                10.1038/s41386-019-0420-x
                6785092
                31112988
                54713bd8-a7aa-4029-9f4c-daa6a64f2dde
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article