92
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miRBase: from microRNA sequences to function

      research-article
      , ,
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          miRBase catalogs, names and distributes microRNA gene sequences. The latest release of miRBase (v22) contains microRNA sequences from 271 organisms: 38 589 hairpin precursors and 48 860 mature microRNAs. We describe improvements to the database and website to provide more information about the quality of microRNA gene annotations, and the cellular functions of their products. We have collected 1493 small RNA deep sequencing datasets and mapped a total of 5.5 billion reads to microRNA sequences. The read mapping patterns provide strong support for the validity of between 20% and 65% of microRNA annotations in different well-studied animal genomes, and evidence for the removal of >200 sequences from the database. To improve the availability of microRNA functional information, we are disseminating Gene Ontology terms annotated against miRBase sequences. We have also used a text-mining approach to search for microRNA gene names in the full-text of open access articles. Over 500 000 sentences from 18 542 papers contain microRNA names. We score these sentences for functional information and link them with 12 519 microRNA entries. The sentences themselves, and word clouds built from them, provide effective summaries of the functional information about specific microRNAs. miRBase is publicly and freely available at http://mirbase.org/.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Predicting effective microRNA target sites in mammalian mRNAs

            MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks. DOI: http://dx.doi.org/10.7554/eLife.05005.001
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              miRDB: an online resource for microRNA target prediction and functional annotations

              MicroRNAs (miRNAs) are small non-coding RNAs that are extensively involved in many physiological and disease processes. One major challenge in miRNA studies is the identification of genes regulated by miRNAs. To this end, we have developed an online resource, miRDB (http://mirdb.org), for miRNA target prediction and functional annotations. Here, we describe recently updated features of miRDB, including 2.1 million predicted gene targets regulated by 6709 miRNAs. In addition to presenting precompiled prediction data, a new feature is the web server interface that allows submission of user-provided sequences for miRNA target prediction. In this way, users have the flexibility to study any custom miRNAs or target genes of interest. Another major update of miRDB is related to functional miRNA annotations. Although thousands of miRNAs have been identified, many of the reported miRNAs are not likely to play active functional roles or may even have been falsely identified as miRNAs from high-throughput studies. To address this issue, we have performed combined computational analyses and literature mining, and identified 568 and 452 functional miRNAs in humans and mice, respectively. These miRNAs, as well as associated functional annotations, are presented in the FuncMir Collection in miRDB.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                08 January 2019
                13 November 2018
                13 November 2018
                : 47
                : Database issue , Database issue
                : D155-D162
                Affiliations
                School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
                Author notes
                To whom correspondence should be addressed. Tel: +44 161 2755673; Email: sam.griffiths-jones@ 123456manchester.ac.uk
                Article
                gky1141
                10.1093/nar/gky1141
                6323917
                30423142
                547688fc-ec3f-4002-b9b5-b69d6acee425
                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 October 2018
                : 24 October 2018
                : 15 September 2018
                Page count
                Pages: 8
                Funding
                Funded by: Biotechnology and Biological Sciences Research Council 10.13039/501100000268
                Award ID: BB/G022623/1
                Categories
                Database Issue

                Genetics
                Genetics

                Comments

                Comment on this article