31
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Accumulation of Plastic Debris and Associated Contaminants in Aquatic Food Webs

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a generic theoretical model (MICROWEB) that simulates the transfer of microplastics and hydrophobic organic chemicals (HOC) in food webs. We implemented the model for an Arctic case comprised of nine species including Atlantic cod and polar bear as top predator. We used the model to examine the effect of plastic ingestion on trophic transfer of microplastics and persistent HOCs (PCBs) and metabolizable HOCs (PAHs), spanning a wide range of hydrophobicities. In a scenario where HOCs in plastic and water are in equilibrium, PCBs biomagnify less when more microplastic is ingested, because PCBs biomagnify less well from ingested plastic than from regular food. In contrast, PAHs biomagnify more when more microplastic is ingested, because plastic reduces the fraction of PAHs available for metabolization. We also explore nonequilibrium scenarios representative of additives that are leaching out, as well as sorbing HOCs, quantitatively showing how the above trends are strengthened and weakened, respectively. The observed patterns were not very sensitive to modifications in the structure of the food web. The model can be used as a tool to assess prospective risks of exposure to microplastics and complex HOC mixtures for any food web, including those with relevance for human health.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Plastic and human health: a micro issue?

          Microplastics are a pollutant of environmental concern. Their presence in food destined for human consumption and in air samples has been reported. Thus, microplastic exposure via diet or inhalation could occur, the human health effects of which are unknown. The current review article draws upon cross-disciplinary scientific literature to discuss and evaluate the potential human health impacts of microplastics and outlines urgent areas for future research. Key literature up to September 2016 relating to bioaccumulation, particle toxicity, and chemical and microbial contaminants were critically examined. Whilst this is an emerging field, complimentary existing fields indicate potential particle, chemical and microbial hazards. If inhaled or ingested, microplastics may bioaccumulate and exert localised particle toxicity by inducing or enhancing an immune response. Chemical toxicity could occur due to the localised leaching of component monomers, endogenous additives, and adsorbed environmental pollutants. Chronic exposure is anticipated to be of greater concern due to the accumulative effect which could occur. This is expected to be dose-dependent, and a robust evidence-base of exposure levels is currently lacking. Whilst there is potential for microplastics to impact human health, assessing current exposure levels and burdens is key. This information will guide future research into the potential mechanisms of toxicity and hence therein possible health effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transport and release of chemicals from plastics to the environment and to wildlife.

            Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress

              Plastic debris litters aquatic habitats globally, the majority of which is microscopic (< 1 mm), and is ingested by a large range of species. Risks associated with such small fragments come from the material itself and from chemical pollutants that sorb to it from surrounding water. Hazards associated with the complex mixture of plastic and accumulated pollutants are largely unknown. Here, we show that fish, exposed to a mixture of polyethylene with chemical pollutants sorbed from the marine environment, bioaccumulate these chemical pollutants and suffer liver toxicity and pathology. Fish fed virgin polyethylene fragments also show signs of stress, although less severe than fish fed marine polyethylene fragments. We provide baseline information regarding the bioaccumulation of chemicals and associated health effects from plastic ingestion in fish and demonstrate that future assessments should consider the complex mixture of the plastic material and their associated chemical pollutants.
                Bookmark

                Author and article information

                Journal
                Environ Sci Technol
                Environ. Sci. Technol
                es
                esthag
                Environmental Science & Technology
                American Chemical Society
                0013-936X
                1520-5851
                20 June 2018
                07 August 2018
                : 52
                : 15
                : 8510-8520
                Affiliations
                []Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University , P.O. Box 47, 6700 AA Wageningen, The Netherlands
                []Wageningen Marine Research, P.O. Box 68, 1970 AB IJmuiden, The Netherlands
                Author notes
                [* ]Phone: +31 317 489701. E-mail: noel.diepens@ 123456wur.nl .
                Article
                10.1021/acs.est.8b02515
                6150694
                29925231
                548b2168-1bb4-474c-960b-8bc41f4cf34b
                Copyright © 2018 American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 10 May 2018
                : 20 June 2018
                Categories
                Article
                Custom metadata
                es8b02515
                es-2018-02515q

                General environmental science
                General environmental science

                Comments

                Comment on this article