60
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-invasive estimation of glomerular filtration rate (GFR). The Lund model: Simultaneous use of cystatin C- and creatinine-based GFR-prediction equations, clinical data and an internal quality check

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Knowledge of glomerular filtration rate (GFR) is required to detect and follow impairment of renal function, to allow correct dosage of drugs cleared by the kidneys, and for the use of nephrotoxic contrast media. Correct determination of GFR requires invasive techniques, which are expensive, slow and not risk-free. Therefore, GFR-prediction equations based solely upon cystatin C or creatinine and anthropometric data or upon cystatin C, creatinine and anthropometric data have been developed. The combined prediction equations display the best diagnostic performance, but in several easily identifiable clinical situations (e.g. abnormal muscle mass, treatment with large doses of glucocorticoids) prediction equations based upon either cystatin C or creatinine are better than the combined equations. In Lund, where cystatin C has been used as a GFR-marker in the clinical routine since 1994, a strategy based upon this knowledge has therefore been developed. This comprises simultaneous use of a cystatin C-based and a creatinine-based GFR-prediction equation. If the GFRs predicted agree, the mean value is used as a reliable GFR-estimate. If the GFRs predicted do not agree, clinical data is evaluated to identify reasons for not using one of the two prediction equations and the GFR predicted by the other one is used. If no reasons for the difference in predicted GFRs are found, an invasive gold standard determination of GFR is performed. If the GFRs predicted agree for a patient, the creatinine value is reliably connected to a specific GFR and can be used to follow changes in GFR of that patient.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine.

          Based on statistical analysis of data in 186 children, a formula was derived which allows accurate estimation of glomerular filtration rate (GFR) from plasma creatinine and body lenght (GFR(ml/min/1.73 sq m) = 0.55 length (cm)/Per (mg/dl). Its application to clearance data in a separate group of 223 children reveals excellent agreement with GFR estimated by the Ccr (r = .935) or Cin (r = .905). This formula should be useful for adjusting dosages of drugs excreted by the kidney and detecting significant changes in renal function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD.

            Serum cystatin C was proposed as a potential replacement for serum creatinine in glomerular filtration rate (GFR) estimation. We report the development and evaluation of GFR-estimating equations using serum cystatin C alone and serum cystatin C, serum creatinine, or both with demographic variables. Test of diagnostic accuracy. Participants screened for 3 chronic kidney disease (CKD) studies in the United States (n = 2,980) and a clinical population in Paris, France (n = 438). Measured GFR (mGFR). Estimated GFR using the 4 new equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both with age, sex, and race. New equations were developed by using linear regression with log GFR as the outcome in two thirds of data from US studies. Internal validation was performed in the remaining one third of data from US CKD studies; external validation was performed in the Paris study. GFR was measured by using urinary clearance of iodine-125-iothalamate in the US studies and chromium-51-EDTA in the Paris study. Serum cystatin C was measured by using Dade-Behring assay, standardized serum creatinine values were used. Mean mGFR, serum creatinine, and serum cystatin C values were 48 mL/min/1.73 m(2) (5th to 95th percentile, 15 to 95), 2.1 mg/dL, and 1.8 mg/L, respectively. For the new equations, coefficients for age, sex, and race were significant in the equation with serum cystatin C, but 2- to 4-fold smaller than in the equation with serum creatinine. Measures of performance in new equations were consistent across the development and internal and external validation data sets. Percentages of estimated GFR within 30% of mGFR for equations based on serum cystatin C alone, serum cystatin C, serum creatinine, or both levels with age, sex, and race were 81%, 83%, 85%, and 89%, respectively. The equation using serum cystatin C level alone yields estimates with small biases in age, sex, and race subgroups, which are improved in equations including these variables. Study population composed mainly of patients with CKD. Serum cystatin C level alone provides GFR estimates that are nearly as accurate as serum creatinine level adjusted for age, sex, and race, thus providing an alternative GFR estimate that is not linked to muscle mass. An equation including serum cystatin C level in combination with serum creatinine level, age, sex, and race provides the most accurate estimates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Using serum creatinine to estimate glomerular filtration rate: accuracy in good health and in chronic kidney disease.

              The National Kidney Foundation has advocated the use of the abbreviated Modification of Diet in Renal Disease (MDRD) equation to estimate glomerular filtration rate (GFR) from serum creatinine measurements in clinical laboratories. However, healthy persons were not included in the development of the MDRD equation. To assess the accuracy of the MDRD equation in patients with chronic kidney disease compared with healthy persons and to develop a new equation that uses both patients with chronic kidney disease and healthy persons. Cross-sectional study. The Mayo Clinic, a tertiary-care medical center. Consecutive patients (n = 320) who had an iothalamate clearance test specifically for chronic kidney disease evaluation and consecutive healthy persons (n = 580) who had an iothalamate clearance test specifically for kidney donor evaluation. Serum creatinine levels, GFR, demographic characteristics, and clinical characteristics were abstracted from the medical record. The MDRD equation underestimated GFR by 6.2% in patients with chronic kidney disease and by 29% in healthy persons. Re-estimated coefficients for serum creatinine and sex were similar to the original MDRD equation in the chronic kidney disease series but not in the healthy series. At the same serum creatinine level, age, and sex, GFR was on average 26% higher in healthy persons than in patients with chronic kidney disease (P < 0.001). A quadratic GFR equation was developed to estimate logarithmic GFR from the following covariates: 1/SCr, 1/SCr2, age, and sex (where SCr = serum creatinine). The new equation was not developed in a general population sample. Elderly and African-American persons were underrepresented. The MDRD equation systematically underestimates GFR in healthy persons. A new equation developed with patients who have chronic kidney disease and healthy persons may be a step toward accurately estimating GFR when the diagnosis of chronic kidney disease is unknown.
                Bookmark

                Author and article information

                Journal
                Scand J Clin Lab Invest
                Scand. J. Clin. Lab. Invest
                ICLB
                iclb20
                Scandinavian Journal of Clinical and Laboratory Investigation
                Taylor & Francis
                0036-5513
                1502-7686
                1 January 2010
                22 February 2010
                : 70
                : 2
                : 65-70
                Affiliations
                [ a ] Department of Clinical Chemistry, University Hospital, Lund, Sweden
                Author notes
                Correspondence: Anders Grubb, Department of Clinical Chemistry, University Hospital, SE-22185 Lund, Sweden. Tel: +4646173964. Fax: +4646130064 or +4646189114. E-mail: anders.grubb@ 123456med.lu.se or a.grubb@ 123456lsn.se
                Article
                464762
                10.3109/00365511003642535
                4673578
                20170415
                549c5e50-b1dc-400b-ae44-6d1c667887c7
                © Informa UK Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 4 January 2010
                : 4 January 2010
                Page count
                Figures: 1, Tables: 0, References: 63, Pages: 6
                Categories
                Invited Review

                Clinical chemistry
                kidney function tests,estimation of glomerular filtration rate,creatinine,cystatin c,renal failure

                Comments

                Comment on this article