2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficient Grafting of Cyclodextrin to Alginate and Performance of the Hydrogel for Release of Model Drug

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Controlling the rate of release of molecules from a hydrogel is of high interest for various drug delivery systems and medical devices. A strategy to alter the release profiles of soluble and poorly soluble active ingredients from hydrogels can be to combine the hydrogel forming ability of alginate with the inclusion forming ability of cyclodextrins (CyD). Here, β-CyD was grafted to alginate in a three-step synthesis using periodate oxidation, reductive amination and copper(I)-catalyzed azide-alkyne cycloaddition. A grafting degree of 4.7% mol β-CyD/mol sugar residues was obtained. The grafting degree was controlled by varying the reaction parameters where the amount of linker used in reductive amination was especially influential. Ca-alginate gel beads grafted with β-CyD showed increased uptake of the model molecule methyl orange. Release experiments showed that the grafted material had a prolonged release of methyl orange and an increased total amount of released methyl orange. These results show that the β-CyD grafted alginate is still able to form a hydrogel while the grafted cyclodextrins retain their ability to form inclusion complex with methyl orange. Further testing should be done with this system to investigate capability for drug delivery applications.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Cu-catalyzed azide-alkyne cycloaddition.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer.

            The global occurrence in water resources of organic micropollutants, such as pesticides and pharmaceuticals, has raised concerns about potential negative effects on aquatic ecosystems and human health. Activated carbons are the most widespread adsorbent materials used to remove organic pollutants from water but they have several deficiencies, including slow pollutant uptake (of the order of hours) and poor removal of many relatively hydrophilic micropollutants. Furthermore, regenerating spent activated carbon is energy intensive (requiring heating to 500-900 degrees Celsius) and does not fully restore performance. Insoluble polymers of β-cyclodextrin, an inexpensive, sustainably produced macrocycle of glucose, are likewise of interest for removing micropollutants from water by means of adsorption. β-cyclodextrin is known to encapsulate pollutants to form well-defined host-guest complexes, but until now cross-linked β-cyclodextrin polymers have had low surface areas and poor removal performance compared to conventional activated carbons. Here we crosslink β-cyclodextrin with rigid aromatic groups, providing a high-surface-area, mesoporous polymer of β-cyclodextrin. It rapidly sequesters a variety of organic micropollutants with adsorption rate constants 15 to 200 times greater than those of activated carbons and non-porous β-cyclodextrin adsorbent materials. In addition, the polymer can be regenerated several times using a mild washing procedure with no loss in performance. Finally, the polymer outperformed a leading activated carbon for the rapid removal of a complex mixture of organic micropollutants at environmentally relevant concentrations. These findings demonstrate the promise of porous cyclodextrin-based polymers for rapid, flow-through water treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads.

              Calcium alginate gel beads were prepared from a range of well characterized alginates. The physical properties of beads depended strongly on the composition, sequential structure, and molecular size of the polymers. Beads with the highest mechanical strength, lowest shrinkage, best stability towards monovalent cations, and highest porosity were made from alginate with a content of L-guluronic acid higher than 70% and an average length of the G-blocks higher than 15. For these "high G" alginates the critical overlap intrinsic viscosities have been determined, and for molecular weight higher than 2.4 x 10(5), the gel strength was independent of the molecular weight.
                Bookmark

                Author and article information

                Contributors
                finn.l.aachmann@ntnu.no
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 June 2019
                27 June 2019
                2019
                : 9
                : 9325
                Affiliations
                [1 ]ISNI 0000 0001 1516 2393, GRID grid.5947.f, Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, , NTNU - Norwegian University of Science and Technology, ; N-7491 Trondheim, Norway
                [2 ]ISNI 0000 0001 0742 471X, GRID grid.5117.2, Department of Chemistry and Bioscience, , Aalborg University (AAU), ; 9220 Aalborg, Denmark
                Author information
                http://orcid.org/0000-0003-1613-4663
                Article
                45761
                10.1038/s41598-019-45761-4
                6597533
                31249333
                549caeb4-a5d9-4145-8f12-0986c544f166
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 27 June 2018
                : 5 June 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                polysaccharides,biomedical materials
                Uncategorized
                polysaccharides, biomedical materials

                Comments

                Comment on this article