4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Self-Healable Electrically Conducting Wires for Wearable Microelectronics

      , , , , , , , ,
      Angewandte Chemie
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Scalable coating and properties of transparent, flexible, silver nanowire electrodes.

          We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Omega/sq and approximately 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could greatly enhance solar cell performance. A mechanical study shows that Ag NW electrodes on flexible substrates show excellent robustness when subjected to bending. We also study the electrical conductance of Ag nanowires and their junctions and report a facile electrochemical method for a Au coating to reduce the wire-to-wire junction resistance for better overall film conductance. Simple mechanical pressing was also found to increase the NW film conductance due to the reduction of junction resistance. The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity.

              Broader applications of carbon nanotubes to real-world problems have largely gone unfulfilled because of difficult material synthesis and laborious processing. We report high-performance multifunctional carbon nanotube (CNT) fibers that combine the specific strength, stiffness, and thermal conductivity of carbon fibers with the specific electrical conductivity of metals. These fibers consist of bulk-grown CNTs and are produced by high-throughput wet spinning, the same process used to produce high-performance industrial fibers. These scalable CNT fibers are positioned for high-value applications, such as aerospace electronics and field emission, and can evolve into engineered materials with broad long-term impact, from consumer electronics to long-range power transmission.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie
                Angew. Chem.
                Wiley-Blackwell
                00448249
                September 01 2014
                September 01 2014
                : 126
                : 36
                : 9680-9685
                Article
                10.1002/ange.201405145
                54a35422-bec0-4b54-b536-68411060a65c
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article