9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dynamic Determinants of the Uncontrolled Manifold during Human Quiet Stance

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human postural sway during stance arises from coordinated multi-joint movements. Thus, a sway trajectory represented by a time-varying postural vector in the multiple-joint-angle-space tends to be constrained to a low-dimensional subspace. It has been proposed that the subspace corresponds to a manifold defined by a kinematic constraint, such that the position of the center of mass (CoM) of the whole body is constant in time, referred to as the kinematic uncontrolled manifold ( kinematic-UCM). A control strategy related to this hypothesis ( CoM-control-strategy) claims that the central nervous system (CNS) aims to keep the posture close to the kinematic-UCM using a continuous feedback controller, leading to sway patterns that mostly occur within the kinematic-UCM, where no corrective control is exerted. An alternative strategy proposed by the authors ( intermittent control-strategy) claims that the CNS stabilizes posture by intermittently suspending the active feedback controller, in such a way to allow the CNS to exploit a stable manifold of the saddle-type upright equilibrium in the state-space of the system, referred to as the dynamic-UCM, when the state point is on or near the manifold. Although the mathematical definitions of the kinematic- and dynamic-UCM are completely different, both UCMs play similar roles in the stabilization of multi-joint upright posture. The purpose of this study was to compare the dynamic performance of the two control strategies. In particular, we considered a double-inverted-pendulum-model of postural control, and analyzed the two UCMs defined above. We first showed that the geometric configurations of the two UCMs are almost identical. We then investigated whether the UCM-component of experimental sway could be considered as passive dynamics with no active control, and showed that such UCM-component mainly consists of high frequency oscillations above 1 Hz, corresponding to anti-phase coordination between the ankle and hip. We also showed that this result can be better characterized by an eigenfrequency associated with the dynamic-UCM. In summary, our analysis highlights the close relationship between the two control strategies, namely their ability to simultaneously establish small CoM variations and postural stability, but also make it clear that the intermittent control hypothesis better explains the spectral characteristics of sway.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Central programming of postural movements: adaptation to altered support-surface configurations.

          We studied the extent to which automatic postural actions in standing human subjects are organized by a limited repertoire of central motor programs. Subjects stood on support surfaces of various lengths, which forced them to adopt different postural movement strategies to compensate for the same external perturbations. We assessed whether a continuum or a limited set of muscle activation patterns was used to produce different movement patterns and the extent to which movement patterns were influenced by prior experience. Exposing subjects standing on a normal support surface to brief forward and backward horizontal surface perturbations elicited relatively stereotyped patterns of leg and trunk muscle activation with 73- to 110-ms latencies. Activity began in the ankle joint muscles and then radiated in sequence to thigh and then trunk muscles on the same dorsal or ventral aspect of the body. This activation pattern exerted compensatory torques about the ankle joints, which restored equilibrium by moving the body center of mass forward or backward. This pattern has been termed the ankle strategy because it restores equilibrium by moving the body primarily around the ankle joints. To successfully maintain balance while standing on a support surface short in relation to foot length, subjects activated leg and trunk muscles at similar latencies but organized the activity differently. The trunk and thigh muscles antagonistic to those used in the ankle strategy were activated in the opposite proximal-to-distal sequence, whereas the ankle muscles were generally unresponsive. This activation pattern produced a compensatory horizontal shear force against the support surface but little, if any, ankle torque. This pattern has been termed the hip strategy, because the resulting motion is focused primarily about the hip joints. Exposing subjects to horizontal surface perturbations while standing on support surfaces intermediate in length between the shortest and longest elicited more complex postural movements and associated muscle activation patterns that resembled ankle and hip strategies combined in different temporal relations. These complex postural movements were executed with combinations of torque and horizontal shear forces and motions of ankle and hip joints. During the first 5-20 practice trials immediately following changes from one support surface length to another, response latencies were unchanged. The activation patterns, however, were complex and resembled the patterns observed during well-practiced stance on surfaces of intermediate lengths.(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A control engineer's guide to sliding mode control

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A new interpretation of spontaneous sway measures based on a simple model of human postural control.

              This study shows that center-of-pressure (COP) traces that closely resemble physiologically measured COP functions can be produced by an appropriate selection of model parameters in a simple feedback model of the human postural control system. Variations in the values of stiffness, damping, time delay, and noise level determine the values of 15 sway measures commonly used to characterize spontaneous sway. Results from model simulations indicate that there is a high degree of correlation among these sway measures, and the measures cluster into three different groups. Only two principal components accounted for about 92% of the variation among the different sway measures analyzed. This model can be used to formulate hypotheses regarding the cause of postural control deficits reported in the literature. This is accomplished using a multidimensional optimization procedure to estimate model parameters from a diverse set of spontaneous sway measures. These model parameters describe physiologically meaningful features of the postural control system as opposed to conventional sway measures that provide only a parametric description of sway. To show the application of this method, we applied it to published data of spontaneous sway from elderly subjects and contrasted it to the data of young healthy subjects. We found that modest increases in stiffness and damping and a fairly large increase in noise level with aging could account for the variety of sway measures reported in the literature for elderly subjects.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                06 December 2016
                2016
                : 10
                : 618
                Affiliations
                [1] 1Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University Osaka, Japan
                [2] 2Robotics, Brain and Cognitive Sciences Department, Fondazione Istituto Italiano di Tecnologia Genoa, Italy
                Author notes

                Edited by: Mikhail Lebedev, Duke University, USA

                Reviewed by: Marcos Duarte, Universidade Federal do ABC, Brazil; Wei-Li Hsu, National Taiwan University, Taiwan; Frederick Robert Carrick, Bedfordshire Centre for Mental Health Research in Association with University of Cambridge, UK; Shun Sasagawa, Kanagawa University, Japan

                *Correspondence: Taishin Nomura taishin@ 123456bpe.es.osaka-u.ac.jp

                †Present Address: Yasuyuki Suzuki, Carnegie Mellon University Robotics Institute, Pittsburgh, USA

                Article
                10.3389/fnhum.2016.00618
                5138220
                27999535
                54a89b06-c44f-4b95-933d-ebdb442a4f66
                Copyright © 2016 Suzuki, Morimoto, Kiyono, Morasso and Nomura.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 August 2016
                : 21 November 2016
                Page count
                Figures: 8, Tables: 5, Equations: 15, References: 37, Pages: 20, Words: 15670
                Categories
                Neuroscience
                Original Research

                Neurosciences
                posture control,uncontrolled manifold,intermittent control,postural sway,double inverted pendulum,postural stability

                Comments

                Comment on this article