9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relative Importance of Deterministic and Stochastic Processes on Soil Microbial Community Assembly in Temperate Grasslands

      , , , , , , , ,
      Microorganisms
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Changes in species composition across communities, i.e., β-diversity, is a central focus of ecology. Compared to macroorganisms, the β-diversity of soil microbes and its drivers are less studied. Whether the determinants of soil microbial β-diversity are consistent between soil depths and between abundant and rare microorganisms remains controversial. Here, using the 16S-rRNA of soil bacteria and archaea sampled at different soil depths (0–10 and 30–50 cm) from 32 sites along an aridity gradient of 1500 km in the temperate grasslands in northern China, we compared the effects of deterministic and stochastic processes on the taxonomic and phylogenetic β-diversity of soil microbes. Using variation partitioning and null models, we found that the taxonomic β-diversity of the overall bacterial communities was more strongly determined by deterministic processes in both soil layers (the explanatory power of environmental distance in topsoil: 25.4%; subsoil: 47.4%), while their phylogenetic counterpart was more strongly determined by stochastic processes (the explanatory power of spatial distance in topsoil: 42.1; subsoil 24.7%). However, in terms of abundance, both the taxonomic and phylogenetic β-diversity of the abundant bacteria in both soil layers was more strongly determined by deterministic processes, while those of rare bacteria were more strongly determined by stochastic processes. In comparison with bacteria, both the taxonomic and phylogenetic β-diversity of the overall abundant and rare archaea were strongly determined by deterministic processes. Among the variables representing deterministic processes, contemporary and historical climate and aboveground vegetation dominated the microbial β-diversity of the overall and abundant microbes of both domains in topsoils, but soil geochemistry dominated in subsoils. This study presents a comprehensive understanding on the β-diversity of soil microbial communities in the temperate grasslands in northern China. Our findings highlight the importance of soil depth, phylogenetic turnover, and species abundance in the assembly processes of soil microbial communities.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          UPARSE: highly accurate OTU sequences from microbial amplicon reads.

          Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Very high resolution interpolated climate surfaces for global land areas

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              UniFrac: a new phylogenetic method for comparing microbial communities.

              We introduce here a new method for computing differences between microbial communities based on phylogenetic information. This method, UniFrac, measures the phylogenetic distance between sets of taxa in a phylogenetic tree as the fraction of the branch length of the tree that leads to descendants from either one environment or the other, but not both. UniFrac can be used to determine whether communities are significantly different, to compare many communities simultaneously using clustering and ordination techniques, and to measure the relative contributions of different factors, such as chemistry and geography, to similarities between samples. We demonstrate the utility of UniFrac by applying it to published 16S rRNA gene libraries from cultured isolates and environmental clones of bacteria in marine sediment, water, and ice. Our results reveal that (i) cultured isolates from ice, water, and sediment resemble each other and environmental clone sequences from sea ice, but not environmental clone sequences from sediment and water; (ii) the geographical location does not correlate strongly with bacterial community differences in ice and sediment from the Arctic and Antarctic; and (iii) bacterial communities differ between terrestrially impacted seawater (whether polar or temperate) and warm oligotrophic seawater, whereas those in individual seawater samples are not more similar to each other than to those in sediment or ice samples. These results illustrate that UniFrac provides a new way of characterizing microbial communities, using the wealth of environmental rRNA sequences, and allows quantitative insight into the factors that underlie the distribution of lineages among environments.
                Bookmark

                Author and article information

                Contributors
                Journal
                MICRKN
                Microorganisms
                Microorganisms
                MDPI AG
                2076-2607
                September 2021
                September 10 2021
                : 9
                : 9
                : 1929
                Article
                10.3390/microorganisms9091929
                54d40fc3-7680-409c-8319-262420430a43
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article