6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Unsupervised Facial Geometry Learning for Sketch to Photo Synthesis

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Face sketch-photo synthesis is a critical application in law enforcement and digital entertainment industry where the goal is to learn the mapping between a face sketch image and its corresponding photo-realistic image. However, the limited number of paired sketch-photo training data usually prevents the current frameworks to learn a robust mapping between the geometry of sketches and their matching photo-realistic images. Consequently, in this work, we present an approach for learning to synthesize a photo-realistic image from a face sketch in an unsupervised fashion. In contrast to current unsupervised image-to-image translation techniques, our framework leverages a novel perceptual discriminator to learn the geometry of human face. Learning facial prior information empowers the network to remove the geometrical artifacts in the face sketch. We demonstrate that a simultaneous optimization of the face photo generator network, employing the proposed perceptual discriminator in combination with a texture-wise discriminator, results in a significant improvement in quality and recognition rate of the synthesized photos. We evaluate the proposed network by conducting extensive experiments on multiple baseline sketch-photo datasets.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Face photo-sketch synthesis and recognition.

          In this paper, we propose a novel face photo-sketch synthesis and recognition method using a multiscale Markov Random Fields (MRF) model. Our system has three components: 1) given a face photo, synthesizing a sketch drawing; 2) given a face sketch drawing, synthesizing a photo; and 3) searching for face photos in the database based on a query sketch drawn by an artist. It has useful applications for both digital entertainment and law enforcement. We assume that faces to be studied are in a frontal pose, with normal lighting and neutral expression, and have no occlusions. To synthesize sketch/photo images, the face region is divided into overlapping patches for learning. The size of the patches decides the scale of local face structures to be learned. From a training set which contains photo-sketch pairs, the joint photo-sketch model is learned at multiple scales using a multiscale MRF model. By transforming a face photo to a sketch (or transforming a sketch to a photo), the difference between photos and sketches is significantly reduced, thus allowing effective matching between the two in face sketch recognition. After the photo-sketch transformation, in principle, most of the proposed face photo recognition approaches can be applied to face sketch recognition in a straightforward way. Extensive experiments are conducted on a face sketch database including 606 faces, which can be downloaded from our Web site (http://mmlab.ie.cuhk.edu.hk/facesketch.html).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Colorful Image Colorization

            Given a grayscale photograph as input, this paper attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. We propose a fully automatic approach that produces vibrant and realistic colorizations. We embrace the underlying uncertainty of the problem by posing it as a classification task and use class-rebalancing at training time to increase the diversity of colors in the result. The system is implemented as a feed-forward pass in a CNN at test time and is trained on over a million color images. We evaluate our algorithm using a "colorization Turing test," asking human participants to choose between a generated and ground truth color image. Our method successfully fools humans on 32% of the trials, significantly higher than previous methods. Moreover, we show that colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder. This approach results in state-of-the-art performance on several feature learning benchmarks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

              Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain \(X\) to a target domain \(Y\) in the absence of paired examples. Our goal is to learn a mapping \(G: X \rightarrow Y\) such that the distribution of images from \(G(X)\) is indistinguishable from the distribution \(Y\) using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping \(F: Y \rightarrow X\) and introduce a cycle consistency loss to push \(F(G(X)) \approx X\) (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.
                Bookmark

                Author and article information

                Journal
                12 October 2018
                Article
                1810.05361
                54d8994c-0344-4160-8913-9cbb865813bc

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                Published as a conference paper in BIOSIG 2018
                cs.CV

                Computer vision & Pattern recognition
                Computer vision & Pattern recognition

                Comments

                Comment on this article