9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Von willebrand factor increases endothelial cell adhesiveness for human mesenchymal stem cells by activating p38 mitogen-activated protein kinase

      research-article
      1 , 1 , , 1 ,
      Stem Cell Research & Therapy
      BioMed Central

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Delivered systemically or natively circulating mesenchymal stem cells accumulate in injured tissues. During homing mesenchymal stem cells adhere to endothelial cells and infiltrate underlying tissue. Previously we have shown that adhesiveness of endothelial cells for mesenchymal stem cells correlates with the inhibition of mitochondrial function of endothelial cells and secretion of von Willebrand factor. We hypothesized that von Willebrand factor is an auto/paracrine regulator of endothelial cell adhesiveness and studied the effect of von Willebrand factor on adhesion of mesenchymal stem cells to endothelial cells.

          Methods

          We used Affymetrix DNA microarrays, human protein phospho-MAPK array, Western blot, cell-based ELISA and flow cytometry analysis to study the activation of endothelial cells by von Willebrand factor. Cell adhesion assay and protein kinase inhibitors were used to evaluate the role of mitogen-activated protein kinases in the regulation of endothelial cell adhesiveness for mesenchymal stem cell.

          Results

          Treatment of endothelial cells with von Willebrand factor stimulated the mesenchymal stem cell adhesion in a time- and concentration-dependent manner. Mesenchymal stem cells did not adhere to immobilized von Willebrand factor and did not express receptors for von Willebrand factor suggesting that the stimulation of the mesenchymal stem cell adhesion is a result of endothelial cell activation with von Willebrand factor. Treatment of endothelial cells with von Willebrand factor activated ERK-1,2 and p38 MAPK without an effect on gene or cell surface expression of E-selectin, P-selectin, VCAM1 and ICAM1. Inhibition of p38 MAPK, but not ERK-1,2, in endothelial cells completely abrogated the stimulation of the mesenchymal stem cell adhesion by von Willebrand factor.

          Conclusions

          Von Willebrand factor is an auto/paracrine regulator of endothelial cells. Activation of p38 MAPK in endothelial cells by von Willebrand factor is responsible for the regulation of endothelial cell adhesiveness for mesenchymal stem cells.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: not found
          • Article: not found

          The Dynamic in vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion

            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi-organ failure syndrome.

            Recent studies have suggested that ex vivo expansion of autologous hematopoietic cells could be a therapy of choice for the treatment of bone marrow failure. We investigated the potential of a combined infusion of autologous ex vivo expanded hematopoietic cells with mesenchymal (MSCs) for the treatment of multi-organ failure syndrome following irradiation in a non-human primate model. Hematopoietic cells and MSCs were expanded from bone marrow aspirates. MSCs were transduced with the gene encoding for the green fluorescent protein (e-GFP), in order to track them following infusion. Twelve animals were studied. Nine animals received total-body irradiation at 8 Gy from a neutron/gamma source thus resulting in heterogeneous exposure; three animals were sham-irradiated. The animals were treated with expanded hematopoietic stem cells and MSCs, expanded hematopoietic stem cells alone, or MSCs alone. Unmanipulated bone marrow cell transplants were used as controls. Depending on the neutron/gamma ratio, an acute radiation sickness of varying severity but of similar nature resulted. GFP-labeled cells were found in the injured muscle, skin, bone marrow and gut of the treated animals via PCR up to 82 days post-infusion. This is the first evidence of expanded MSCs homing in numerous tissues following a severe multi-organ injury in primates. Localization of the transduced MSCs correlated to the severity and geometry of irradiation. A repair process was observed in various tissues. The plasticity potential of the MSCs and their contribution to the repair process in vivo remains to be studied. Copyright 2003 John Wiley & Sons, Ltd.
              • Record: found
              • Abstract: found
              • Article: not found

              Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall.

              Inflammation is a fundamental process that protects organisms by removing or neutralizing injurious agents. A key event in the inflammatory response is the localized recruitment of various leukocyte subsets. Here we address the cellular and regulatory mechanisms of leukocyte recruitment to the vessel wall in cardiovascular disease and discuss our evolving understanding of the role of the vascular endothelium in this process. The vascular endothelium is the continuous single-cell lining of the cardiovascular system that forms a critical interface between the blood and its components on one side and the tissues and organs on the other. It is heterogeneous and has many synthetic and metabolic functions including secretion of platelet-derived growth factor, von Willebrand factor, prostacyclin, NO, endothelin-1, and chemokines and the expression of adhesion molecules. It also acts as a nonthrombogenic and selective permeable barrier. Endothelial cells also interact closely with the extracellular matrix and with adjacent cells including pericytes and smooth muscle cells within the vessel wall. A central question in vascular biology is the role of the endothelium in the initiation of inflammatory response, the extent of its "molecular conversations" with recruited leukocytes, and its influence on the extent and/or outcome of this response.

                Author and article information

                Journal
                Stem Cell Res Ther
                Stem Cell Research & Therapy
                BioMed Central
                1757-6512
                2010
                17 November 2010
                : 1
                : 5
                : 35
                Affiliations
                [1 ]Department of Physiology and Biophysics, Stony Brook University, Nicolls Road, Stony Brook, NY 11794, USA
                Article
                scrt35
                10.1186/scrt35
                3025437
                21083900
                54def890-0684-471a-b61d-257096c83f19
                Copyright ©2010 Potapova et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 June 2010
                : 17 November 2010
                Categories
                Research

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article

                Related Documents Log