64
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      How do we think machines think? An fMRI study of alleged competition with an artificial intelligence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mentalizing is defined as the inference of mental states of fellow humans, and is a particularly important skill for social interactions. Here we assessed whether activity in brain areas involved in mentalizing is specific to the processing of mental states or can be generalized to the inference of non-mental states by comparing brain responses during the interaction with an intentional and an artificial agent. Participants were scanned using fMRI during interactive rock-paper-scissors games while believing their opponent was a fellow human (Intentional agent, Int), a humanoid robot endowed with an artificial intelligence (Artificial agent, Art), or a computer playing randomly (Random agent, Rnd). Participants' subjective reports indicated that they adopted different stances against the three agents. The contrast of brain activity during interaction with the artificial and the random agents didn't yield any cluster at the threshold used, suggesting the absence of a reproducible stance when interacting with an artificial intelligence. We probed response to the artificial agent in regions of interest corresponding to clusters found in the contrast between the intentional and the random agents. In the precuneus involved in working memory, the posterior intraparietal suclus, in the control of attention and the dorsolateral prefrontal cortex, in executive functions, brain activity for Art was larger than for Rnd but lower than for Int, supporting the intrinsically engaging nature of social interactions. A similar pattern in the left premotor cortex and anterior intraparietal sulcus involved in motor resonance suggested that participants simulated human, and to a lesser extend humanoid robot actions, when playing the game. Finally, mentalizing regions, the medial prefrontal cortex and right temporoparietal junction, responded to the human only, supporting the specificity of mentalizing areas for interactions with intentional agents.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          People thinking about thinking people. The role of the temporo-parietal junction in "theory of mind".

          Humans powerfully and flexibly interpret the behaviour of other people based on an understanding of their minds: that is, we use a "theory of mind." In this study we distinguish theory of mind, which represents another person's mental states, from a representation of the simple presence of another person per se. The studies reported here establish for the first time that a region in the human temporo-parietal junction (here called the TPJ-M) is involved specifically in reasoning about the contents of another person's mind. First, the TPJ-M was doubly dissociated from the nearby extrastriate body area (EBA; Downing et al., 2001). Second, the TPJ-M does not respond to false representations in non-social control stories. Third, the BOLD response in the TPJ-M bilaterally was higher when subjects read stories about a character's mental states, compared with stories that described people in physical detail, which did not differ from stories about nonhuman objects. Thus, the role of the TPJ-M in understanding other people appears to be specific to reasoning about the content of mental states.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Assignment of functional activations to probabilistic cytoarchitectonic areas revisited.

            Probabilistic cytoarchitectonic maps in standard reference space provide a powerful tool for the analysis of structure-function relationships in the human brain. While these microstructurally defined maps have already been successfully used in the analysis of somatosensory, motor or language functions, several conceptual issues in the analysis of structure-function relationships still demand further clarification. In this paper, we demonstrate the principle approaches for anatomical localisation of functional activations based on probabilistic cytoarchitectonic maps by exemplary analysis of an anterior parietal activation evoked by visual presentation of hand gestures. After consideration of the conceptual basis and implementation of volume or local maxima labelling, we comment on some potential interpretational difficulties, limitations and caveats that could be encountered. Extending and supplementing these methods, we then propose a supplementary approach for quantification of structure-function correspondences based on distribution analysis. This approach relates the cytoarchitectonic probabilities observed at a particular functionally defined location to the areal specific null distribution of probabilities across the whole brain (i.e., the full probability map). Importantly, this method avoids the need for a unique classification of voxels to a single cortical area and may increase the comparability between results obtained for different areas. Moreover, as distribution-based labelling quantifies the "central tendency" of an activation with respect to anatomical areas, it will, in combination with the established methods, allow an advanced characterisation of the anatomical substrates of functional activations. Finally, the advantages and disadvantages of the various methods are discussed, focussing on the question of which approach is most appropriate for a particular situation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions of the left superior frontal gyrus in humans: a lesion study.

              The superior frontal gyrus (SFG) is thought to contribute to higher cognitive functions and particularly to working memory (WM), although the nature of its involvement remains a matter of debate. To resolve this issue, methodological tools such as lesion studies are needed to complement the functional imaging approach. We have conducted the first lesion study to investigate the role of the SFG in WM and address the following questions: do lesions of the SFG impair WM and, if so, what is the nature of the WM impairment? To answer these questions, we compared the performance of eight patients with a left prefrontal lesion restricted to the SFG with that of a group of 11 healthy control subjects and two groups of patients with focal brain lesions [prefrontal lesions sparing the SFG (n = 5) and right parietal lesions (n = 4)] in a series of WM tasks. The WM tasks (derived from the classical n-back paradigm) allowed us to study the impact of the SFG lesions on domain (verbal, spatial, face) and complexity (1-, 2- and 3-back) processing within WM. As expected, patients with a left SFG lesion exhibited a WM deficit when compared with all control groups, and the impairment increased with the complexity of the tasks. This complexity effect was significantly more marked for the spatial domain. Voxel-to-voxel mapping of each subject's performance showed that the lateral and posterior portion of the SFG (mostly Brodmann area 8, rostral to the frontal eye field) was the subregion that contributed the most to the WM impairment. These data led us to conclude that (i) the lateral and posterior portion of the left SFG is a key component of the neural network of WM; (ii) the participation of this region in WM is triggered by the highest level of executive processing; (iii) the left SFG is also involved in spatially oriented processing. Our findings support a hybrid model of the anatomical and functional organization of the lateral SFG for WM, according to which this region is involved in higher levels of WM processing (monitoring and manipulation) but remains oriented towards spatial cognition, although the domain specificity is not exclusive and is overridden by an increase in executive demand, regardless of the domain being processed. From a clinical perspective, this study provides new information on the impact of left SFG lesions on cognition that will be of use to neurologists and neurosurgeons.
                Bookmark

                Author and article information

                Journal
                Front Hum Neurosci
                Front Hum Neurosci
                Front. Hum. Neurosci.
                Frontiers in Human Neuroscience
                Frontiers Media S.A.
                1662-5161
                08 May 2012
                2012
                : 6
                : 103
                Affiliations
                [1] 1simpleInstitut de Neurosciences de la Timone, Centre National de la Recherche Scientifique - Aix-Marseille University Marseille, France
                [2] 2simpleAutism Resources Center, Sainte Marguerite Hospital, AP-HM Marseille, France
                [3] 3simpleAdolescent Psychiatry Unit, Salvator Hospital, AP-HM Marseille, France
                [4] 4simpleInstitute for Cognitive Systems, Technische Universität München München, Germany
                Author notes

                Edited by: Leonhard Schilbach, Max-Planck-Institute for Neurological Research, Germany

                Reviewed by: Nicole David, University Medical Center Hamburg-Eppendorf, Germany; Bojana Kuzmanovic, Research Center Juelich, Germany

                *Correspondence: Thierry Chaminade, Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique - Aix-Marseille University, 31 Chemin Jospeh Aiguier, CEDEX 20 Marseille, France. e-mail: tchamina@ 123456gmail.com
                Article
                10.3389/fnhum.2012.00103
                3347624
                22586381
                54e1f9ce-bb64-47ce-a531-cf4dbdc880f0
                Copyright © 2012 Chaminade, Rosset, Da Fonseca, Nazarian, Lutcher, Cheng and Deruelle.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited.

                History
                : 31 December 2011
                : 08 April 2012
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 36, Pages: 9, Words: 7824
                Categories
                Neuroscience
                Original Research Article

                Neurosciences
                fmri,artificial intelligence,social cognition,neuroscience
                Neurosciences
                fmri, artificial intelligence, social cognition, neuroscience

                Comments

                Comment on this article