50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional Heterogeneity within the Default Network during Semantic Processing and Speech Production

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This fMRI study investigated the functional heterogeneity of the core nodes of the default mode network (DMN) during language processing. The core nodes of the DMN were defined as task-induced deactivations over multiple tasks in 94 healthy subjects. We used a factorial design that manipulated different tasks (semantic matching or speech production) and stimuli (familiar words and objects or unfamiliar stimuli), alternating with periods of fixation/rest. Our findings revealed several consistent effects in the DMN, namely less deactivations in the left inferior parietal lobule during semantic than perceptual matching in parallel with greater deactivations during semantic matching in anterior subdivisions of the posterior cingulate cortex (PCC) and the ventromedial prefrontal cortex (MPFC). This suggests that, when the brain is engaged in effortful semantic tasks, a part of the DMN in the left angular gyrus was less deactivated as five other nodes of the DMN were more deactivated. These five DMN areas, where deactivation was greater for semantic than perceptual matching, were further differentiated because deactivation was greater in (i) posterior ventral MPFC for speech production relative to semantic matching, (ii) posterior precuneus and PCC for perceptual processing relative to speech production, and (iii) right inferior parietal cortex for pictures of objects relative to written words during both naming and semantic decisions. Our results thus highlight that task difficulty alone cannot fully explain the functional variability in task-induced deactivations. Together these results emphasize that core nodes within the DMN are functionally heterogeneous and differentially sensitive to the type of language processing.

          Related collections

          Most cited references80

          • Record: found
          • Abstract: found
          • Article: not found

          Correspondence of the brain's functional architecture during activation and rest.

          Neural connections, providing the substrate for functional networks, exist whether or not they are functionally active at any given moment. However, it is not known to what extent brain regions are continuously interacting when the brain is "at rest." In this work, we identify the major explicit activation networks by carrying out an image-based activation network analysis of thousands of separate activation maps derived from the BrainMap database of functional imaging studies, involving nearly 30,000 human subjects. Independently, we extract the major covarying networks in the resting brain, as imaged with functional magnetic resonance imaging in 36 subjects at rest. The sets of major brain networks, and their decompositions into subnetworks, show close correspondence between the independent analyses of resting and activation brain dynamics. We conclude that the full repertoire of functional networks utilized by the brain in action is continuously and dynamically "active" even when at "rest."
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Searching for a baseline: functional imaging and the resting human brain.

            Functional brain imaging in humans has revealed task-specific increases in brain activity that are associated with various mental activities. In the same studies, mysterious, task-independent decreases have also frequently been encountered, especially when the tasks of interest have been compared with a passive state, such as simple fixation or eyes closed. These decreases have raised the possibility that there might be a baseline or resting state of brain function involving a specific set of mental operations. We explore this possibility, including the manner in which we might define a baseline and the implications of such a baseline for our understanding of brain function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization.

              Resting state functional connectivity MRI (fcMRI) is widely used to investigate brain networks that exhibit correlated fluctuations. While fcMRI does not provide direct measurement of anatomic connectivity, accumulating evidence suggests it is sufficiently constrained by anatomy to allow the architecture of distinct brain systems to be characterized. fcMRI is particularly useful for characterizing large-scale systems that span distributed areas (e.g., polysynaptic cortical pathways, cerebro-cerebellar circuits, cortical-thalamic circuits) and has complementary strengths when contrasted with the other major tool available for human connectomics-high angular resolution diffusion imaging (HARDI). We review what is known about fcMRI and then explore fcMRI data reliability, effects of preprocessing, analysis procedures, and effects of different acquisition parameters across six studies (n = 98) to provide recommendations for optimization. Run length (2-12 min), run structure (1 12-min run or 2 6-min runs), temporal resolution (2.5 or 5.0 s), spatial resolution (2 or 3 mm), and the task (fixation, eyes closed rest, eyes open rest, continuous word-classification) were varied. Results revealed moderate to high test-retest reliability. Run structure, temporal resolution, and spatial resolution minimally influenced fcMRI results while fixation and eyes open rest yielded stronger correlations as contrasted to other task conditions. Commonly used preprocessing steps involving regression of nuisance signals minimized nonspecific (noise) correlations including those associated with respiration. The most surprising finding was that estimates of correlation strengths stabilized with acquisition times as brief as 5 min. The brevity and robustness of fcMRI positions it as a powerful tool for large-scale explorations of genetic influences on brain architecture. We conclude by discussing the strengths and limitations of fcMRI and how it can be combined with HARDI techniques to support the emerging field of human connectomics.
                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front Psychol
                Front. Psychology
                Frontiers in Psychology
                Frontiers Research Foundation
                1664-1078
                22 June 2012
                13 August 2012
                2012
                : 3
                : 281
                Affiliations
                [1] 1simpleWellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London London, UK
                Author notes

                Edited by: David James Sharp, Imperial College London, UK

                Reviewed by: Lucina Q. Uddin, Stanford University, USA; Matthew A. Lambon Ralph, University of Manchester, UK; Jessica Andrews-Hanna, University of Colorado Boulder, USA

                *Correspondence: Mohamed L. Seghier, Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK. e-mail: m.seghier@ 123456ucl.ac.uk

                This article was submitted to Frontiers in Cognition, a specialty of Frontiers in Psychology.

                Article
                10.3389/fpsyg.2012.00281
                3417693
                22905029
                54f35f9f-b1a1-45f5-ac17-2028e6d8110e
                Copyright © 2012 Seghier and Price.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.

                History
                : 09 May 2012
                : 20 July 2012
                Page count
                Figures: 6, Tables: 1, Equations: 0, References: 111, Pages: 16, Words: 13023
                Categories
                Psychology
                Original Research

                Clinical Psychology & Psychiatry
                functional mri,default network,semantic decisions,speech production,words and objects,language

                Comments

                Comment on this article