27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Temporal dynamics of a local fish community are strongly affected by immigration from the surrounding metacommunity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A 5-year time series of annual censuses was collected from a large floodplain lake to determine how dynamics of the local fish community were affected by changes in hydrological connectivity with the surrounding metacommunity. The lake was disconnected from the metacommunity for 1 year prior to our study and remained disconnected until 3 months before our third annual census, when a flood reconnected the lake to the metacommunity. We determined how changes in connectivity affected temporal dynamics of (1) local community composition and (2) the population composition, condition, and growth of catfish, to shed light on how immigration of other species might affect local population dynamics. Before reconnection, the community was likely shaped by interactions between the local environment and species traits. The reconnection caused significant immigration and change in community composition and correlated with a significant and abrupt decline in catfish condition, growth, and abundance; effects likely due to the immigration of a competitor with a similar trophic niche: carp. The community was slow to return to its preconnection state, which may be due to dispersal traits of the fishes, and a time-lag in the recovery of the local catfish population following transient intensification of species interactions. The dynamics observed were concordant with the species sorting and mass-effects perspectives of metacommunity theory. Floods cause episodic dispersal in floodplain fish metacommunities, and so, flood frequency determines the relative importance of regional and local processes. Local processes may be particularly important to certain species, but these species may need sufficient time between floods for population increase, before the next flood-induced dispersal episode brings competitors and predators that might cause population decline. Accordingly, species coexistence in these metacommunities may be facilitated by spatiotemporal storage effects, which may in turn be regulated by flood frequency.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Community patterns in source-sink metacommunities.

          We present a model of a source-sink competitive metacommunity, defined as a regional set of communities in which local diversity is maintained by dispersal. Although the conditions of local and regional coexistence have been well defined in such systems, no study has attempted to provide clear predictions of classical community-wide patterns. Here we provide predictions for species richness, species relative abundances, and community-level functional properties (productivity and space occupation) at the local and regional scales as functions of the proportion of dispersal between communities. Local (alpha) diversity is maximal at an intermediate level of dispersal, whereas between-community (beta) and regional (gamma) diversity decline as dispersal increases because of increased homogenization of the metacommunity. The relationships between local and regional species richness and the species rank abundance distributions are strongly affected by the level of dispersal. Local productivity and space occupation tend to decline as dispersal increases, resulting in either a hump-shaped or a positive relationship between species richness and productivity, depending on the scale considered (local or regional). These effects of dispersal are buffered by decreasing species dispersal success. Our results provide a niche-based alternative to the recent neutral-metacommunity model and have important implications for conservation biology and landscape management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms.

            Relationships between traits of organisms and the structure of their metacommunities have so far mainly been explored with meta-analyses. We compared metacommunities of a wide variety of aquatic organism groups (12 groups, ranging from bacteria to fish) in the same set of 99 ponds to minimise biases inherent to meta-analyses. In the category of passive dispersers, large-bodied groups showed stronger spatial patterning than small-bodied groups suggesting an increasing impact of dispersal limitation with increasing body size. Metacommunities of organisms with the ability to fly (i.e. insect groups) showed a weaker imprint of dispersal limitation than passive dispersers with similar body size. In contrast, dispersal movements of vertebrate groups (fish and amphibians) seemed to be mainly confined to local connectivity patterns. Our results reveal that body size and dispersal mode are important drivers of metacommunity structure and these traits should therefore be considered when developing a predictive framework for metacommunity dynamics. © 2012 Blackwell Publishing Ltd/CNRS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contrasts between habitat generalists and specialists: an empirical extension to the basic metacommunity framework.

              Emergence of the metacommunity concept has made a substantial contribution to better understanding of the community composition and dynamics in a regional context. However, long-term field data for testing of available metacommunity models are still scarce, and the extent to which these models apply to the real world remains unknown. Tests conducted so far have largely sought to fit data on the entire regional set of species to one of several metacommunity models, implicitly assuming that all species operate similarly over the same set of sites. However, species differ in their habitat use. These differences can, in the most general terms, be expressed as a gradient of habitat specialization (ranging from habitat specialists to habitat generalists). We postulate that such differences in habitat specialization will have implications for metacommunity dynamics. Specifically, we predict that specialists respond more to local processes and generalists respond to regional spatial processes. We tested these predictions using natural microcosm communities for which long-term (nine-year) environmental and population dynamics data were available. We used redundancy analysis to determine the proportion of variation explained by environmental and spatial factors. We repeated this analysis to explain variation in the entire regional set of species, in generalist species only, and in specialists only. We further used ANOVA to test for differences in the proportions of explained variation. We found that habitat specialists responded primarily to environmental factors and habitat generalists responded mainly to spatial factors. Thus, from the metacommunity perspective, the dynamics of habitat specialists are best explained by a combination of species sorting and mass effects, while that of habitat generalists are best explained by patch dynamics and neutral models. Consequently, we infer that a natural metacommunity can exhibit complicated dynamics, with some groups of species (e.g., habitat specialists) governed according to environmental processes and other groups (e.g., habitat generalists) governed mainly by dispersal processes.
                Bookmark

                Author and article information

                Journal
                Ecol Evol
                Ecol Evol
                ece3
                Ecology and Evolution
                BlackWell Publishing Ltd (Oxford, UK )
                2045-7758
                2045-7758
                January 2015
                17 December 2014
                : 5
                : 1
                : 200-212
                Affiliations
                [1 ]The Murray-Darling Freshwater Research Centre, CSIRO Land and Water Wodonga, Victoria, Australia
                [2 ]Plymouth Marine Laboratory, The Hoe Plymouth, PL1 3DH, U.K
                [3 ]The Murray-Darling Freshwater Research Centre, La Trobe University Mildura, Victoria, Australia
                Author notes
                Correspondence Rick J. Stoffels, The Murray-Darling Freshwater Research Centre, CSIRO Land and Water, Wodonga, Victoria, Australia. Tel: +61 2 6024 9665; Fax: +61 2 6059 77531; E-mail: rick.stoffels@ 123456csiro.au

                Funding Information This work was funded by the National Environmental Research Program and the Murray-Darling Basin Authority.

                Article
                10.1002/ece3.1369
                4298447
                25628877
                54fd9346-6c35-4f53-ae02-34d8944218ce
                © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

                This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 June 2014
                : 20 November 2014
                : 25 November 2014
                Categories
                Original Research

                Evolutionary Biology
                community ecology,flow regime,hydrological connectivity,hydrological fragmentation,migration,neutral theory,patch dynamics,species traits

                Comments

                Comment on this article