8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fibroblast growth factor 21 and its novel association with oxidative stress

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Fibroblast growth factor 21 (FGF21) is an endocrine-member of the FGF family. It is synthesized mainly in the liver, but it is also expressed in adipose tissue, skeletal muscle, and many other organs. It has a key role in glucose and lipid metabolism, as well as in energy balance. FGF21 concentration in plasma is increased in patients with obesity, insulin resistance, and metabolic syndrome. Recent findings suggest that such increment protects tissue from an increased oxidative stress environment. Different types of physical stress, such as strenuous exercising, lactation, diabetic nephropathy, cardiovascular disease, and critical illnesses, also increase FGF21 circulating concentration. FGF21 is now considered a stress-responsive hormone in humans. The discovery of an essential response element in the FGF21 gene, for the activating transcription factor 4 (ATF4), involved in the regulation of oxidative stress, and its relation with genes such as NRF2, TBP-2, UCP3, SOD2, ERK, and p38, places FGF21 as a key regulator of the oxidative stress cell response. Its role in chronic diseases and its involvement in the treatment and follow-up of these diseases has been recently the target of new studies. The diminished oxidative stress through FGF21 pathways observed with anti-diabetic therapy is another clue of the new insights of this hormone.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease.

           S Cao,  Randal Kaufman (2014)
          The endoplasmic reticulum (ER) is a specialized organelle for the folding and trafficking of proteins, which is highly sensitive to changes in intracellular homeostasis and extracellular stimuli. Alterations in the protein-folding environment cause accumulation of misfolded proteins in the ER that profoundly affect a variety of cellular signaling processes, including reduction-oxidation (redox) homeostasis, energy production, inflammation, differentiation, and apoptosis. The unfolded protein response (UPR) is a collection of adaptive signaling pathways that evolved to resolve protein misfolding and restore an efficient protein-folding environment. Production of reactive oxygen species (ROS) has been linked to ER stress and the UPR. ROS play a critical role in many cellular processes and can be produced in the cytosol and several organelles, including the ER and mitochondria. Studies suggest that altered redox homeostasis in the ER is sufficient to cause ER stress, which could, in turn, induce the production of ROS in the ER and mitochondria. Although ER stress and oxidative stress coexist in many pathologic states, whether and how these stresses interact is unknown. It is also unclear how changes in the protein-folding environment in the ER cause oxidative stress. In addition, how ROS production and protein misfolding commit the cell to an apoptotic death and contribute to various degenerative diseases is unknown. A greater fundamental understanding of the mechanisms that preserve protein folding homeostasis and redox status will provide new information toward the development of novel therapeutics for many human diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus.

             Juris Meier (2012)
            In healthy humans, the incretin glucagon-like peptide 1 (GLP-1) is secreted after eating and lowers glucose concentrations by augmenting insulin secretion and suppressing glucagon release. Additional effects of GLP-1 include retardation of gastric emptying, suppression of appetite and, potentially, inhibition of β-cell apoptosis. Native GLP-1 is degraded within ~2-3 min in the circulation; various GLP-1 receptor agonists have, therefore, been developed to provide prolonged in vivo actions. These GLP-1 receptor agonists can be categorized as either short-acting compounds, which provide short-lived receptor activation (such as exenatide and lixisenatide) or as long-acting compounds (for example albiglutide, dulaglutide, exenatide long-acting release, and liraglutide), which activate the GLP-1 receptor continuously at their recommended dose. The pharmacokinetic differences between these drugs lead to important differences in their pharmacodynamic profiles. The short-acting GLP-1 receptor agonists primarily lower postprandial blood glucose levels through inhibition of gastric emptying, whereas the long-acting compounds have a stronger effect on fasting glucose levels, which is mediated predominantly through their insulinotropic and glucagonostatic actions. The adverse effect profiles of these compounds also differ. The individual properties of the various GLP-1 receptor agonists might enable incretin-based treatment of type 2 diabetes mellitus to be tailored to the needs of each patient.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification.

              Reactive oxygen species (ROS) and other radicals are involved in a variety of biological phenomena, such as mutation, carcinogenesis, degenerative and other diseases, inflammation, aging, and development. ROS are well recognized for playing a dual role as deleterious and beneficial species. The objectives of this review are to describe oxidative stress phenomena, terminology, definitions, and basic chemical characteristics of the species involved; examine the biological targets susceptible to oxidation and the defense mechanisms of the organism against these reactive metabolites; and analyze methodologies, including immunohistochemical markers, used in toxicological pathology in the visualization of oxidative stress phenomena. Direct detection of ROS and other free radicals is difficult, because these molecules are short-lived and highly reactive in a nonspecific manner. Ongoing oxidative damage is, thus, generally analyzed by measurement of secondary products including derivatives of amino acids, nuclei acids, and lipid peroxidation. Attention has been focused on electrochemical methods based on voltammetry measurements for evaluating the total reducing power of biological fluids and tissues. This approach can function as a tool to assess the antioxidant-reducing profile of a biological site and follow changes in pathological situations. This review thus includes different topics essential for understanding oxidative stress phenomena and provides tools for those intending to conduct study and research in this field.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                22 December 2016
                April 2017
                22 December 2016
                : 11
                : 335-341
                Affiliations
                Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
                Author notes
                [* ]Correspondence to: Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga # 15, Sección XVI, Tlalpan, 14000 Mexico City, Mexico. ceptamim@ 123456gmail.com
                Article
                S2213-2317(16)30365-2
                10.1016/j.redox.2016.12.024
                5200873
                28039838
                © 2016 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                Categories
                Review Article

                Comments

                Comment on this article