55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Role for Set1/MLL-Related Components in Epigenetic Regulation of the Caenorhabditis elegans Germ Line

      research-article
      1 , 2 , 1 , *
      PLoS Genetics
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The methylation of lysine 4 of Histone H3 (H3K4me) is an important component of epigenetic regulation. H3K4 methylation is a consequence of transcriptional activity, but also has been shown to contribute to “epigenetic memory”; i.e., it can provide a heritable landmark of previous transcriptional activity that may help promote or maintain such activity in subsequent cell descendants or lineages. A number of multi-protein complexes that control the addition of H3K4me have been described in several organisms. These Set1/MLL or COMPASS complexes often share a common subset of conserved proteins, with other components potentially contributing to tissue-specific or developmental regulation of the methyltransferase activity. Here we show that the normal maintenance of H3K4 di- and tri-methylation in the germ line of Caenorhabditis elegans is dependent on homologs of the Set1/MLL complex components WDR-5.1 and RBBP-5. Different methylation states that are each dependent on wdr-5.1 and rbbp-5 require different methyltransferases. In addition, different subsets of conserved Set1/MLL-like complex components appear to be required for H3K4 methylation in germ cells and somatic lineages at different developmental stages. In adult germ cells, mutations in wdr-5.1 or rbbp-5 dramatically affect both germ line stem cell (GSC) population size and proper germ cell development. RNAi knockdown of RNA Polymerase II does not significantly affect the wdr-5.1–dependent maintenance of H3K4 methylation in either early embryos or adult GSCs, suggesting that the mechanism is not obligately coupled to transcription in these cells. A separate, wdr-5.1–independent mode of H3K4 methylation correlates more directly with transcription in the adult germ line and in embryos. Our results indicate that H3K4 methylation in the germline is regulated by a combination of Set1/MLL component-dependent and -independent modes of epigenetic establishment and maintenance.

          Author Summary

          The germ line transmits both genetic and epigenetic information between and across generations. The germ line uniquely retains developmental totipotency, and this property of germ cells is likely embedded in epigenetic information that is retained throughout the germ line cycle, within and across each generation. The methylation of Histone H3 on Lysine 4 (H3K4me) has been identified as both a mark of active transcription and a potential component of “epigenetic memory.” We show that C. elegans homologs of components of a conserved H3K4 methyltransferase complex, the Set1/MLL complex, are important for normal H3K4 methylation in C. elegans germ cells and early embryos. Interestingly, Set1/MLL component dependent H3K4 methylation can occur independently of transcription in early embryonic germline and somatic blastomeres, and also in adult germline stem cells. A separate H3K4 methylation mechanism that operates independently of Set1/MLL component activities appears more dependent on ongoing transcription. We hypothesize that H3K4 methylation is maintained throughout the germ cell cycle by alternating transcription-dependent and -independent mechanisms that maintain this component of the germline epigenome.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          Chromatin signatures of pluripotent cell lines.

          Epigenetic genome modifications are thought to be important for specifying the lineage and developmental stage of cells within a multicellular organism. Here, we show that the epigenetic profile of pluripotent embryonic stem cells (ES) is distinct from that of embryonic carcinoma cells, haematopoietic stem cells (HSC) and their differentiated progeny. Silent, lineage-specific genes replicated earlier in pluripotent cells than in tissue-specific stem cells or differentiated cells and had unexpectedly high levels of acetylated H3K9 and methylated H3K4. Unusually, in ES cells these markers of open chromatin were also combined with H3K27 trimethylation at some non-expressed genes. Thus, pluripotency of ES cells is characterized by a specific epigenetic profile where lineage-specific genes may be accessible but, if so, carry repressive H3K27 trimethylation modifications. H3K27 methylation is functionally important for preventing expression of these genes in ES cells as premature expression occurs in embryonic ectoderm development (Eed)-deficient ES cells. Our data suggest that lineage-specific genes are primed for expression in ES cells but are held in check by opposing chromatin modifications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methylation of lysine 4 on histone H3: intricacy of writing and reading a single epigenetic mark.

            Cells employ elaborate mechanisms to introduce structural and chemical variation into chromatin. Here, we focus on one such element of variation: methylation of lysine 4 in histone H3 (H3K4). We assess a growing body of literature, including treatment of how the mark is established, the patterns of methylation, and the functional consequences of this epigenetic signature. We discuss structural aspects of the H3K4 methyl recognition by the downstream effectors and propose a distinction between sequence-specific recruitment mechanisms and stabilization on chromatin through methyl-lysine recognition. Finally, we hypothesize how the unique properties of the polyvalent chromatin fiber and associated effectors may amplify small differences in methyl-lysine recognition, simultaneously allowing for a dynamic chromatin architecture.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression.

              It is more evident now than ever that nucleosomes can transmit epigenetic information from one cell generation to the next. It has been demonstrated during the past decade that the posttranslational modifications of histone proteins within the chromosome impact chromatin structure, gene transcription, and epigenetic information. Multiple modifications decorate each histone tail within the nucleosome, including some amino acids that can be modified in several different ways. Covalent modifications of histone tails known thus far include acetylation, phosphorylation, sumoylation, ubiquitination, and methylation. A large body of experimental evidence compiled during the past several years has demonstrated the impact of histone acetylation on transcriptional control. Although histone modification by methylation and ubiquitination was discovered long ago, it was only recently that functional roles for these modifications in transcriptional regulation began to surface. Highlighted in this review are the recent biochemical, molecular, cellular, and physiological functions of histone methylation and ubiquitination involved in the regulation of gene expression as determined by a combination of enzymological, structural, and genetic methodologies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                March 2011
                March 2011
                24 March 2011
                : 7
                : 3
                : e1001349
                Affiliations
                [1 ]Biology Department, Rollins Research Center, Emory University, Atlanta, Georgia, United States of America
                [2 ]Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, Georgia, United States of America
                Friedrich Miescher Institute for Biomedical Research, Switzerland
                Author notes

                Conceived and designed the experiments: TL WGK. Performed the experiments: TL. Analyzed the data: TL WGK. Wrote the paper: TL WGK.

                Article
                10-PLGE-RA-EP-3552R3
                10.1371/journal.pgen.1001349
                3063756
                21455483
                55023005-985a-44df-b373-ec63f255c4dc
                Li, Kelly. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 June 2010
                : 21 February 2011
                Page count
                Pages: 20
                Categories
                Research Article
                Developmental Biology/Embryology
                Developmental Biology/Germ Cells
                Developmental Biology/Stem Cells
                Genetics and Genomics/Chromosome Biology
                Genetics and Genomics/Epigenetics

                Genetics
                Genetics

                Comments

                Comment on this article