19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Macro- and micro-designed chitosan-alginate scaffold architecture by three-dimensional printing and directional freezing

      , , , , ,
      Biofabrication
      IOP Publishing

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          While many tissue-engineered constructs aim to treat cartilage defects, most involve chondrocyte or stem cell seeding on scaffolds. The clinical application of cell-based techniques is limited due to the cost of maintaining cellular constructs on the shelf, potential immune response to allogeneic cell lines, and autologous chondrocyte sources requiring biopsy from already diseased or injured, scarce tissue. An acellular scaffold that can induce endogenous influx and homogeneous distribution of native stem cells from bone marrow holds great promise for cartilage regeneration. This study aims to develop such an acellular scaffold using designed, channeled architecture that simultaneously models the native zones of articular cartilage and subchondral bone. Highly porous, hydrophilic chitosan-alginate (Ch-Al) scaffolds were fabricated in three-dimensionally printed (3DP) molds designed to create millimeter scale macro-channels. Different polymer preform casting techniques were employed to produce scaffolds from both negative and positive 3DP molds. Macro-channeled scaffolds improved cell suspension distribution and uptake overly randomly porous scaffolds, with a wicking volumetric flow rate of 445.6 ± 30.3 mm(3) s(-1) for aqueous solutions and 177 ± 16 mm(3) s(-1) for blood. Additionally, directional freezing was applied to Ch-Al scaffolds, resulting in lamellar pores measuring 300 μm and 50 μm on the long and short axes, thus creating micrometer scale micro-channels. After directionally freezing Ch-Al solution cast in 3DP molds, the combined macro- and micro-channeled scaffold architecture enhanced cell suspension uptake beyond either macro- or micro-channels alone, reaching a volumetric flow rate of 1782.1 ± 48 mm(3) s(-1) for aqueous solutions and 440.9 ± 0.5 mm(3) s(-1) for blood. By combining 3DP and directional freezing, we can control the micro- and macro-architecture of Ch-Al to drastically improve cell influx into and distribution within the scaffold, while achieving porous zones that mimic articular cartilage zonal architecture. In future applications, precisely controlled micro- and macro-channels have the potential to assist immediate endogenous bone marrow uptake, stimulate chondrogenesis, and encourage vascularization of bone in an osteochondral scaffold.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Porous chitosan scaffolds for tissue engineering.

          The wide array of tissue engineering applications exacerbates the need for biodegradable materials with broad potential. Chitosan, the partially deacetylated derivative of chitin, may be one such material. In this study, we examined the use of chitosan for formation of porous scaffolds of controlled microstructure in several tissue-relevant geometries. Porous chitosan materials were prepared by controlled freezing and lyophilization of chitosan solutions and gels. The materials were characterized via light and scanning electron microscopy as well as tensile testing. The scaffolds formed included porous membranes, blocks, tubes and beads. Mean pore diameters could be controlled within the range 1-250 microm, by varying the freezing conditions. Freshly lyophilized chitosan scaffolds could be treated with glycosaminoglycans to form ionic complex materials which retained the original pore structure. Chitosan scaffolds could be rehydrated via an ethanol series to avoid the stiffening caused by rehydration in basic solutions. Hydrated porous chitosan membranes were at least twice as extensible as non-porous chitosan membranes, but their elastic moduli and tensile strengths were about tenfold lower than non-porous controls. The methods and structures described here provide a starting point for the design and fabrication of a family of polysaccharide based scaffold materials with potentially broad applicability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chitosan-alginate hybrid scaffolds for bone tissue engineering.

            A biodegradable scaffold in tissue engineering serves as a temporary skeleton to accommodate and stimulate new tissue growth. Here we report on the development of a biodegradable porous scaffold made from naturally derived chitosan and alginate polymers with significantly improved mechanical and biological properties as compared to its chitosan counterpart. Enhanced mechanical properties were attributable to the formation of a complex structure of chitosan and alginate. Bone-forming osteoblasts readily attached to the chitosan-alginate scaffold, proliferated well, and deposited calcified matrix. The in vivo study showed that the hybrid scaffold had a high degree of tissue compatibility. Calcium deposition occurred as early as the fourth week after implantation. The chitosan-alginate scaffold can be prepared from solutions of physiological pH, which may provide a favorable environment for incorporating proteins with less risk of denaturation. Coacervation of chitosan and alginate combined with liquid-solid separation provides a scaffold with high porosity, and mechanical and biological properties suitable for rapid advancement into clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Freezing as a path to build complex composites

              Materials that are strong, ultra-light weight and tough are in demand for a range of applications, requiring architectures and components carefully designed from the micrometer down to nanometer scales. Nacre-a structure found in many molluscan shells-and bone are frequently used as examples for how nature achieves this through hybrid organic-inorganic composites. Unfortunately, it has proven extremely difficult to transcribe nacre-like clever designs into synthetic materials, partly because their intricate structures need to be replicated at several length scales. We demonstrate how the physics of ice formation can be used to develop sophisticated porous and layered-hybrid materials, including artificial bone, ceramic/metal composites, and porous scaffolds for osseous tissue regeneration with strengths up to four times higher than those currently used for implantation.
                Bookmark

                Author and article information

                Journal
                Biofabrication
                Biofabrication
                IOP Publishing
                1758-5090
                March 01 2016
                January 07 2016
                : 8
                : 1
                : 015003
                Article
                10.1088/1758-5090/8/1/015003
                26741113
                550cc3d0-09de-4301-9e9b-53053abab105
                © 2016
                History

                Comments

                Comment on this article