Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Oxidative stress, induced by 6-hydroxydopamine, reduces proteasome activities in PC12 cells: implications for the pathogenesis of Parkinson's disease.

Journal of Molecular Neuroscience

metabolism, Trypsin, Rats, drug effects, RNA, Messenger, genetics, Protein Subunits, Proteasome Endopeptidase Complex, physiopathology, Parkinson Disease, PC12 Cells, pharmacology, Oxidopamine, physiology, Oxidative Stress, Oxidation-Reduction, Neurons, Glutathione, Enzyme Inhibitors, Down-Regulation, Dose-Response Relationship, Drug, Dopamine, Chymotrypsin, Cell Survival, Caspases, Caspase 3, Antioxidants, Animals

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Mutations in familial Parkinson's disease (PD) have been associated with the failure of protein degradation through the ubiquitin-proteasome system (UPS). Impairment of proteasome function has also been suggested to play a role in the pathogenesis of sporadic PD. We examined the proteasome activity in PC12 cells treated with 6-hydroxydopamine (6-OHDA), the dopamine synthetic derivate used in models of PD. We found that 6-OHDA treatment increased protein oxidation, as indicated by carbonyl group accumulation, and increased caspase-3 activity. In addition, there was an increase in trypsin-, chymotrypsin-, and postacidic-like proteasome activities in cells treated with 10-100 microM 6-OHDA, whereas higher doses caused a marked decline. 6-OHDA exposure also increased mRNA expression of the 19S regulatory subunit in a dose-dependent manner, whereas the expression of 20S- and 11S-subunit mRNAs did not change. Administration of the antioxidant N-acetylcysteine to 6-OHDA-treated cells prevented the alteration in proteasome functions. Moreover, reduction in cell viability owing to administration of proteasome inhibitor MG132 or lactacystin was partially prevented by the endogenous antioxidant-reduced glutathione. In conclusion, our data indicate that mild oxidative stress elevates proteasome activity in response to increase in protein damage. Severe oxidative insult might cause UPS failure, which leads to protein aggregation and cell death. Moreover, in the case of UPS inhibition or failure, the blockade of physiological reactive oxygen species production during normal aerobic metabolism is enough to ameliorate cell viability. Control of protein clearance by potent, brain-penetrating antioxidants might act to slow down the progression of PD.

      Related collections

      Author and article information

      Journal
      10.1385/JMN:24:3:387
      15655261

      Comments

      Comment on this article