57
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A portable expression resource for engineering cross-species genetic circuits and pathways

      research-article
      1 , a , 1 , 2
      Nature Communications
      Nature Pub. Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic circuits and metabolic pathways can be reengineered to allow organisms to process signals and manufacture useful chemicals. However, their functions currently rely on organism-specific regulatory parts, fragmenting synthetic biology and metabolic engineering into host-specific domains. To unify efforts, here we have engineered a cross-species expression resource that enables circuits and pathways to reuse the same genetic parts, while functioning similarly across diverse organisms. Our engineered system combines mixed feedback control loops and cross-species translation signals to autonomously self-regulate expression of an orthogonal polymerase without host-specific promoters, achieving nontoxic and tuneable gene expression in diverse Gram-positive and Gram-negative bacteria. Combining 50 characterized system variants with mechanistic modelling, we show how the cross-species expression resource's dynamics, capacity and toxicity are controlled by the control loops' architecture and feedback strengths. We also demonstrate one application of the resource by reusing the same genetic parts to express a biosynthesis pathway in both model and non-model hosts.

          Abstract

          Organism-specific genetic parts are often used to express circuits and pathways, limiting their portability. Here the authors engineer a cross-species expression resource, without using host-specific parts, to control protein and pathway expression in non-model bacteria.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Regulated functional alternative splicing in Drosophila

          Alternative splicing expands the coding capacity of metazoan genes, and it was largely genetic studies in the fruit-fly Drosophila melanogaster that established the principle that regulated alternative splicing results in tissue- and stage-specific protein isoforms with different functions in development. Alternative splicing is particularly prominent in germ cells, muscle and the central nervous system where it modulates the expression of various proteins including cell-surface molecules and transcription factors. Studies in flies have given us numerous insights into alternative splicing in terms of upstream regulation, the exquisite diversity of their forms and the key differential cellular functions of alternatively spliced gene products. The current inundation of transcriptome sequencing data from Drosophila provides an unprecedented opportunity to gain a comprehensive view of alternative splicing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs.

            Small regulatory RNAs (sRNAs) regulate gene expression in bacteria. We designed synthetic sRNAs to identify and modulate the expression of target genes for metabolic engineering in Escherichia coli. Using synthetic sRNAs for the combinatorial knockdown of four candidate genes in 14 different strains, we isolated an engineered E. coli strain (tyrR- and csrA-repressed S17-1) capable of producing 2 g per liter of tyrosine. Using a library of 130 synthetic sRNAs, we also identified chromosomal gene targets that enabled substantial increases in cadaverine production. Repression of murE led to a 55% increase in cadaverine production compared to the reported engineered strain (XQ56 harboring the plasmid p15CadA). The design principles and the engineering strategy using synthetic sRNAs reported here are generalizable to other bacteria and applicable in developing superior producer strains. The ability to fine-tune target genes with designed sRNAs provides substantial advantages over gene-knockout strategies and other large-scale target identification strategies owing to its easy implementation, ability to modulate chromosomal gene expression without modifying those genes and because it does not require construction of strain libraries.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synthetic circuits integrating logic and memory in living cells.

              Logic and memory are essential functions of circuits that generate complex, state-dependent responses. Here we describe a strategy for efficiently assembling synthetic genetic circuits that use recombinases to implement Boolean logic functions with stable DNA-encoded memory of events. Application of this strategy allowed us to create all 16 two-input Boolean logic functions in living Escherichia coli cells without requiring cascades comprising multiple logic gates. We demonstrate long-term maintenance of memory for at least 90 cell generations and the ability to interrogate the states of these synthetic devices with fluorescent reporters and PCR. Using this approach we created two-bit digital-to-analog converters, which should be useful in biotechnology applications for encoding multiple stable gene expression outputs using transient inputs of inducers. We envision that this integrated logic and memory system will enable the implementation of complex cellular state machines, behaviors and pathways for therapeutic, diagnostic and basic science applications.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                17 July 2015
                2015
                : 6
                : 7832
                Affiliations
                [1 ]Department of Biological Engineering, Pennsylvania State University , University Park, Pennsylvania 16802, USA
                [2 ]Department of Chemical Engineering, Pennsylvania State University , University Park, Pennsylvania 16802, USA
                Author notes
                Author information
                https://orcid.org/http://orcid.org/0000-0002-8850-3272
                Article
                ncomms8832
                10.1038/ncomms8832
                4518296
                26184393
                55123508-a365-41cc-b831-6e1d07094012
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 30 January 2015
                : 16 June 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article