Blog
About

27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-Classical monocytes display inflammatory features: Validation in Sepsis and Systemic Lupus Erythematous

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Given the importance of monocytes in pathogenesis of infectious and other inflammatory disorders, delineating functional and phenotypic characterization of monocyte subsets has emerged as a critical requirement. Although human monocytes have been subdivided into three different populations based on surface expression of CD14 and CD16, published reports suffer from contradictions with respect to subset phenotypes and function. This has been attributed to discrepancies in reliable gating strategies for flow cytometric characterization and purification protocols contributing to significant changes in receptor expression. By using a combination of multicolour flow cytometry and a high-dimensional automated clustering algorithm to confirm robustness of gating strategy and analysis of ex-vivo activation of whole blood with LPS we demonstrate the following: a. ‘Classical’ monocytes are phagocytic with no inflammatory attributes, b. ‘Non-classical’ subtype display ‘inflammatory’ characteristics on activation and display properties for antigen presentation and c. ‘Intermediate’ subtype that constitutes a very small percentage in circulation (under physiological conditions) appear to be transitional monocytes that display both phagocytic and inflammatory function. Analysis of blood from patients with Sepsis, a pathogen driven acute inflammatory disease and Systemic Lupus Erythmatosus (SLE), a chronic inflammatory disorder validated the broad conclusions drawn in the study.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: not found

          Monocyte and macrophage heterogeneity.

          Heterogeneity of the macrophage lineage has long been recognized and, in part, is a result of the specialization of tissue macrophages in particular microenvironments. Circulating monocytes give rise to mature macrophages and are also heterogeneous themselves, although the physiological relevance of this is not completely understood. However, as we discuss here, recent studies have shown that monocyte heterogeneity is conserved in humans and mice, allowing dissection of its functional relevance: the different monocyte subsets seem to reflect developmental stages with distinct physiological roles, such as recruitment to inflammatory lesions or entry to normal tissues. These advances in our understanding have implications for the development of therapeutic strategies that are targeted to modify particular subpopulations of monocytes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blood monocytes consist of two principal subsets with distinct migratory properties.

            Peripheral blood monocytes are a heterogeneous population of circulating leukocytes. Using a murine adoptive transfer system to probe monocyte homing and differentiation in vivo, we identified two functional subsets among murine blood monocytes: a short-lived CX(3)CR1(lo)CCR2(+)Gr1(+) subset that is actively recruited to inflamed tissues and a CX(3)CR1(hi)CCR2(-)Gr1(-) subset characterized by CX(3)CR1-dependent recruitment to noninflamed tissues. Both subsets have the potential to differentiate into dendritic cells in vivo. The level of CX(3)CR1 expression also defines the two major human monocyte subsets, the CD14(+)CD16(-) and CD14(lo)CD16(+) monocytes, which share phenotype and homing potential with the mouse subsets. These findings raise the potential for novel therapeutic strategies in inflammatory diseases.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Monocyte recruitment during infection and inflammation.

               Chao Shi,  E Pamer (2011)
              Monocytes originate from progenitors in the bone marrow and traffic via the bloodstream to peripheral tissues. During both homeostasis and inflammation, circulating monocytes leave the bloodstream and migrate into tissues where, following conditioning by local growth factors, pro-inflammatory cytokines and microbial products, they differentiate into macrophage or dendritic cell populations. Recruitment of monocytes is essential for effective control and clearance of viral, bacterial, fungal and protozoal infections, but recruited monocytes also contribute to the pathogenesis of inflammatory and degenerative diseases. The mechanisms that control monocyte trafficking under homeostatic, infectious and inflammatory conditions are being unravelled and are the focus of this Review.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                11 September 2015
                2015
                : 5
                Affiliations
                [1 ]Infectious Disease Biology Group, Institute of Life Sciences , Bhubaneswar, India.
                [2 ]Department of Medicine, S. C. B. Medical College , Cuttack, India.
                [3 ]Post Graduate Department of Pediatrics, Sishu Bhawan , Cuttack, India
                Author notes
                srep13886
                10.1038/srep13886
                4566081
                26358827
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article