72
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Polarizable Water Model for the Coarse-Grained MARTINI Force Field

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coarse-grained (CG) simulations have become an essential tool to study a large variety of biomolecular processes, exploring temporal and spatial scales inaccessible to traditional models of atomistic resolution. One of the major simplifications of CG models is the representation of the solvent, which is either implicit or modeled explicitly as a van der Waals particle. The effect of polarization, and thus a proper screening of interactions depending on the local environment, is absent. Given the important role of water as a ubiquitous solvent in biological systems, its treatment is crucial to the properties derived from simulation studies. Here, we parameterize a polarizable coarse-grained water model to be used in combination with the CG MARTINI force field. Using a three-bead model to represent four water molecules, we show that the orientational polarizability of real water can be effectively accounted for. This has the consequence that the dielectric screening of bulk water is reproduced. At the same time, we parameterized our new water model such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field. We apply the new model to two cases for which current CG force fields are inadequate. First, we address the transport of ions across a lipid membrane. The computed potential of mean force shows that the ions now naturally feel the change in dielectric medium when moving from the high dielectric aqueous phase toward the low dielectric membrane interior. In the second application we consider the electroporation process of both an oil slab and a lipid bilayer. The electrostatic field drives the formation of water filled pores in both cases, following a similar mechanism as seen with atomistically detailed models.

          Author Summary

          Many biomolecular processes involve charged species moving between regions of high polarity, such as the water phase, and regions of lower polarity, such as the lipid membrane. Due to the change in electrostatic screening between these two environments, the strength of the interactions between the moving charge and the surrounding molecules also changes. This has important consequences for the way biological activity is controlled. To help understand the forces driving the movement of biomolecules, we developed a computational model which is capable of describing these processes at near-atomic detail. To do so efficiently, we use a coarse-grained description of the molecules, in which some of the atomistic detail is averaged out. To capture the inhomogeneous nature of the dielectric response, we re-introduce some detail in the water model; the new model effectively mimics the orientational polarizability of real water molecules, and screens electrostatic interactions realistically. This enables the study of a number of important biological processes that were hitherto considered challenging for coarse-grained models, such as the permeation of ions across a lipid membrane and the rupture of membranes due to an electrostatic field, at relatively low computational cost.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Current status of the AMOEBA polarizable force field.

          Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models toward more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA force field is a leading publicly available example of this next generation of theoretical model, but to date, it has only received relatively limited validation, which we address here. We show that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions. State of the art electronic structure calculations reveal generally very good agreement with AMOEBA for demanding problems such as relative conformational energies of the alanine tetrapeptide and isomers of water sulfate complexes. AMOEBA is shown to be especially successful on protein-ligand binding and computational X-ray crystallography where polarization and accurate electrostatics are critical.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Computer simulation of protein folding.

            A new and very simple representation of protein conformations has been used together with energy minimisation and thermalisation to simulate protein folding. Under certain conditions, the method succeeds in "renaturing" bovine pancreatic trypsin inhibitor from an open-chain conformation into a folded conformation close to that of the native molecule.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                June 2010
                June 2010
                10 June 2010
                : 6
                : 6
                : e1000810
                Affiliations
                [1 ]Department of Physics of Biological Systems, Institute of Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
                [2 ]Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
                Stanford University, United States of America
                Author notes

                Conceived and designed the experiments: SOY LVS DS SJM. Performed the experiments: SOY LVS DS SJM. Analyzed the data: SOY LVS DS SJM. Contributed reagents/materials/analysis tools: SOY LVS DS. Wrote the paper: SOY LVS DS SJM.

                Article
                09-PLCB-RA-1539R2
                10.1371/journal.pcbi.1000810
                2883601
                20548957
                5537cd82-f6ae-44f3-83e3-fde62475a700
                Yesylevskyy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 18 December 2009
                : 6 May 2010
                Page count
                Pages: 17
                Categories
                Research Article
                Biochemistry/Theory and Simulation
                Biophysics/Theory and Simulation

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article