47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      HPV vaccines – A review of the first decade

      ,
      Gynecologic Oncology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pre-adolescent girls (9-15years) have the option of receiving a two dose HPV vaccine series at either a six month or one year interval to provide protection from HPV 16, the most prevalent type associated with cervical cancers, as well as several other less prevalent types. This series of vaccinations is highly likely to protect her from HPV infection until she enters the routine screening program, whether that be primary HPV testing or a combination of HPV testing and cytology. The two dose program has been recommended by the World Health Organization (WHO) since 2015. For women 15years and older, the three dose vaccine schedule is still recommended. The past ten years of Gardasil use has provided evidence of reduced HPV 16/18 infections in countries where there has been high coverage. Gardasil9 has replaced Gardasil. Gardasil9 has the same rapid anti-HPV 18 and HPV45 titer loss as Gardasil did. Cervarix remains equivalent to Gardasil9 in the prevention of HPV infections and precancers of any HPV type; Cervarix also has demonstrated sustained high antibody titers for at least 10years. One dose of Cervarix provides protection against HPV 16/18 infection with robust antibody titers well above natural infection titers. This may offer the easiest and most cost effective vaccination program over time, especially in low and lower middle income countries. Cervical cancer screening must continue to control cancer incidence over the upcoming decades. Future studies of prophylactic HPV vaccines, as defined by the WHO, must demonstrate protection against six month type specific persistent infections, not actual cervical cancer precursor disease endpoints, such as cervical intraepithelial neoplasia grade 3 (CIN 3) or adenocarcinoma in situ (AIS). This simplifies and makes less expensive future comparative studies between existing and new generic vaccines.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women

          The Lancet, 374(9686), 301-314
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis.

            Human papillomavirus (HPV) vaccination programmes were first implemented in several countries worldwide in 2007. We did a systematic review and meta-analysis to assess the population-level consequences and herd effects after female HPV vaccination programmes, to verify whether or not the high efficacy reported in randomised controlled clinical trials are materialising in real-world situations. We searched the Medline and Embase databases (between Jan 1, 2007 and Feb 28, 2014) and conference abstracts for time-trend studies that analysed changes, between the pre-vaccination and post-vaccination periods, in the incidence or prevalence of at least one HPV-related endpoint: HPV infection, anogenital warts, and high-grade cervical lesions. We used random-effects models to derive pooled relative risk (RR) estimates. We stratified all analyses by age and sex. We did subgroup analyses by comparing studies according to vaccine type, vaccination coverage, and years since implementation of the vaccination programme. We assessed heterogeneity across studies using I(2) and χ(2) statistics and we did trends analysis to examine the dose-response association between HPV vaccination coverage and each study effect measure. We identified 20 eligible studies, which were all undertaken in nine high-income countries and represent more than 140 million person-years of follow-up. In countries with female vaccination coverage of at least 50%, HPV type 16 and 18 infections decreased significantly between the pre-vaccination and post-vaccination periods by 68% (RR 0·32, 95% CI 0·19-0·52) and anogenital warts decreased significantly by 61% (0·39, 0·22-0·71) in girls 13-19 years of age. Significant reductions were also recorded in HPV types 31, 33, and 45 in this age group of girls (RR 0·72, 95% CI 0·54-0·96), which suggests cross-protection. Additionally, significant reductions in anogenital warts were also reported in boys younger than 20 years of age (0·66 [95% CI 0·47-0·91]) and in women 20-39 years of age (0·68 [95% CI 0·51-0·89]), which suggests herd effects. In countries with female vaccination coverage lower than 50%, significant reductions in HPV types 16 and 18 infection (RR 0·50, 95% CI 0·34-0·74]) and in anogenital warts (0·86 [95% CI 0·79-0·94]) occurred in girls younger than 20 years of age, with no indication of cross-protection or herd effects. Our results are promising for the long-term population-level effects of HPV vaccination programmes. However, continued monitoring is essential to identify any signals of potential waning efficacy or type-replacement. The Canadian Institutes of Health Research. Copyright © 2015 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-protective efficacy of HPV-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by non-vaccine oncogenic HPV types: 4-year end-of-study analysis of the randomised, double-blind PATRICIA trial.

              We evaluated the efficacy of the human papillomavirus HPV-16/18 AS04-adjuvanted vaccine against non-vaccine oncogenic HPV types in the end-of-study analysis after 4 years of follow-up in PATRICIA (PApilloma TRIal against Cancer In young Adults). Healthy women aged 15-25 years with no more than six lifetime sexual partners were included in PATRICIA irrespective of their baseline HPV DNA status, HPV-16 or HPV-18 serostatus, or cytology. Women were randomly assigned (1:1) to HPV-16/18 vaccine or a control hepatitis A vaccine, via an internet-based central randomisation system using a minimisation algorithm to account for age ranges and study sites. The study was double-blind. The primary endpoint of PATRICIA has been reported previously; the present analysis evaluates cross-protective vaccine efficacy against non-vaccine oncogenic HPV types in the end-of-study analysis. Analyses were done for three cohorts: the according-to-protocol cohort for efficacy (ATP-E; vaccine n=8067, control n=8047), total vaccinated HPV-naive cohort (TVC-naive; no evidence of infection with 14 oncogenic HPV types at baseline, approximating young adolescents before sexual debut; vaccine n=5824, control n=5820), and the total vaccinated cohort (TVC; all women who received at least one vaccine dose, approximating catch-up populations that include sexually active women; vaccine n=9319, control=9325). Vaccine efficacy was evaluated against 6-month persistent infection, cervical intraepithelial neoplasia grade 2 or greater (CIN2+) associated with 12 non-vaccine HPV types (individually or as composite endpoints), and CIN3+ associated with the composite of 12 non-vaccine HPV types. This study is registered with ClinicalTrials.gov, number NCT00122681. Consistent vaccine efficacy against persistent infection and CIN2+ (with or without HPV-16/18 co-infection) was seen across cohorts for HPV-33, HPV-31, HPV-45, and HPV-51. In the most conservative analysis of vaccine efficacy against CIN2+, where all cases co-infected with HPV-16/18 were removed, vaccine efficacy was noted for HPV-33 in all cohorts, and for HPV-31 in the ATP-E and TVC-naive. Vaccine efficacy against CIN2+ associated with the composite of 12 non-vaccine HPV types (31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, and 68), with or without HPV-16/18 co-infection, was 46·8% (95% CI 30·7-59·4) in the ATP-E, 56·2% (37·2-69·9) in the TVC-naive, and 34·2% (20·4-45·8) in the TVC. Corresponding values for CIN3+ were 73·8% (48·3-87·9), 91·4% (65·0-99·0), and 47·5% (22·8-64·8). Data from the end-of-study analysis of PATRICIA show cross-protective efficacy of the HPV-16/18 vaccine against four oncogenic non-vaccine HPV types-HPV-33, HPV-31, HPV-45, and HPV-51-in different trial cohorts representing diverse groups of women. GlaxoSmithKline Biologicals. Copyright © 2012 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Gynecologic Oncology
                Gynecologic Oncology
                Elsevier BV
                00908258
                July 2017
                July 2017
                : 146
                : 1
                : 196-204
                Article
                10.1016/j.ygyno.2017.04.004
                28442134
                553b0466-1c0c-4a77-a3f3-8ff8b453f0e3
                © 2017
                History

                Comments

                Comment on this article