31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monitoring Term Drift Based on Semantic Consistency in an Evolving Vector Field

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Based on the Aristotelian concept of potentiality vs. actuality allowing for the study of energy and dynamics in language, we propose a field approach to lexical analysis. Falling back on the distributional hypothesis to statistically model word meaning, we used evolving fields as a metaphor to express time-dependent changes in a vector space model by a combination of random indexing and evolving self-organizing maps (ESOM). To monitor semantic drifts within the observation period, an experiment was carried out on the term space of a collection of 12.8 million Amazon book reviews. For evaluation, the semantic consistency of ESOM term clusters was compared with their respective neighbourhoods in WordNet, and contrasted with distances among term vectors by random indexing. We found that at 0.05 level of significance, the terms in the clusters showed a high level of semantic consistency. Tracking the drift of distributional patterns in the term space across time periods, we found that consistency decreased, but not at a statistically significant level. Our method is highly scalable, with interpretations in philosophy.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: not found
          • Article: not found

          OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification

            Bookmark
            • Record: found
            • Abstract: not found
            • Conference Proceedings: not found

            Hidden factors and hidden topics

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              IsoRankN: spectral methods for global alignment of multiple protein networks

              Motivation: With the increasing availability of large protein–protein interaction networks, the question of protein network alignment is becoming central to systems biology. Network alignment is further delineated into two sub-problems: local alignment, to find small conserved motifs across networks, and global alignment, which attempts to find a best mapping between all nodes of the two networks. In this article, our aim is to improve upon existing global alignment results. Better network alignment will enable, among other things, more accurate identification of functional orthologs across species. Results: We introduce IsoRankN (IsoRank-Nibble) a global multiple-network alignment tool based on spectral clustering on the induced graph of pairwise alignment scores. IsoRankN outperforms existing algorithms for global network alignment in coverage and consistency on multiple alignments of the five available eukaryotic networks. Being based on spectral methods, IsoRankN is both error tolerant and computationally efficient. Availability: Our software is available freely for non-commercial purposes on request from: http://isorank.csail.mit.edu/ Contact: bab@mit.edu
                Bookmark

                Author and article information

                Comments

                Comment on this article