45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inferring the structure and dynamics of interactions in schooling fish

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Determining individual-level interactions that govern highly coordinated motion in animal groups or cellular aggregates has been a long-standing challenge, central to understanding the mechanisms and evolution of collective behavior. Numerous models have been proposed, many of which display realistic-looking dynamics, but nonetheless rely on untested assumptions about how individuals integrate information to guide movement. Here we infer behavioral rules directly from experimental data. We begin by analyzing trajectories of golden shiners (Notemigonus crysoleucas) swimming in two-fish and three-fish shoals to map the mean effective forces as a function of fish positions and velocities. Speeding and turning responses are dynamically modulated and clearly delineated. Speed regulation is a dominant component of how fish interact, and changes in speed are transmitted to those both behind and ahead. Alignment emerges from attraction and repulsion, and fish tend to copy directional changes made by those ahead. We find no evidence for explicit matching of body orientation. By comparing data from two-fish and three-fish shoals, we challenge the standard assumption, ubiquitous in physics-inspired models of collective behavior, that individual motion results from averaging responses to each neighbor considered separately; three-body interactions make a substantial contribution to fish dynamics. However, pairwise interactions qualitatively capture the correct spatial interaction structure in small groups, and this structure persists in larger groups of 10 and 30 fish. The interactions revealed here may help account for the rapid changes in speed and direction that enable real animal groups to stay cohesive and amplify important social information.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: not found
          • Article: not found

          Novel Type of Phase Transition in a System of Self-Driven Particles

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Inferring individual rules from collective behavior.

            Social organisms form striking aggregation patterns, displaying cohesion, polarization, and collective intelligence. Determining how they do so in nature is challenging; a plethora of simulation studies displaying life-like swarm behavior lack rigorous comparison with actual data because collecting field data of sufficient quality has been a bottleneck. Here, we bridge this gap by gathering and analyzing a high-quality dataset of flocking surf scoters, forming well-spaced groups of hundreds of individuals on the water surface. By reconstructing each individual's position, velocity, and trajectory, we generate spatial and angular neighbor-distribution plots, revealing distinct concentric structure in positioning, a preference for neighbors directly in front, and strong alignment with neighbors on each side. We fit data to zonal interaction models and characterize which individual interaction forces suffice to explain observed spatial patterns. Results point to strong short-range repulsion, intermediate-range alignment, and longer-range attraction (with circular zones), as well as a weak but significant frontal-sector interaction with one neighbor. A best-fit model with such interactions accounts well for observed group structure, whereas absence or alteration in any one of these rules fails to do so. We find that important features of observed flocking surf scoters can be accounted for by zonal models with specific, well-defined rules of interaction.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A simulation study on the schooling mechanism in fish.

                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 15 2011
                November 15 2011
                July 27 2011
                November 15 2011
                : 108
                : 46
                : 18720-18725
                Article
                10.1073/pnas.1107583108
                3219116
                21795604
                55430571-ec6b-4bd4-b1e4-a55f9eb299ff
                © 2011
                History

                Comments

                Comment on this article