16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Conformational Investigation of Propeptide Binding to the Integral Membrane Protein γ-Glutamyl Carboxylase Using Nanodisc Hydrogen Exchange Mass Spectrometry

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Gamma (γ)-glutamyl carboxylase (GGCX) is an integral membrane protein responsible for the post-translational catalytic conversion of select glutamic acid (Glu) residues to γ-carboxy glutamic acid (Gla) in vitamin K-dependent (VKD) proteins. Understanding the mechanism of carboxylation and the role of GGCX in the vitamin K cycle is of biological interest in the development of therapeutics for blood coagulation disorders. Historically, biophysical investigations and structural characterizations of GGCX have been limited due to complexities involving the availability of an appropriate model membrane system. In previous work, a hydrogen exchange mass spectrometry (HX MS) platform was developed to study the structural configuration of GGCX in a near-native nanodisc phospholipid environment. Here we have applied the nanodisc–HX MS approach to characterize specific domains of GGCX that exhibit structural rearrangements upon binding the high-affinity consensus propeptide (pCon; AVFLSREQANQVLQRRRR). pCon binding was shown to be specific for monomeric GGCX-nanodiscs and promoted enhanced structural stability to the nanodisc-integrated complex while maintaining catalytic activity in the presence of carboxylation co-substrates. Noteworthy modifications in HX of GGCX were prominently observed in GGCX peptides 491–507 and 395–401 upon pCon association, consistent with regions previously identified as sites for propeptide and glutamate binding. Several additional protein regions exhibited minor gains in solvent protection upon propeptide incorporation, providing evidence for a structural reorientation of the GGCX complex in association with VKD carboxylation. The results herein demonstrate that nanodisc–HX MS can be utilized to study molecular interactions of membrane-bound enzymes in the absence of a complete three-dimensional structure and to map dynamic rearrangements induced upon ligand binding.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation.

          A new method based on protein fragmentation and directly coupled microbore high-performance liquid chromatography-fast atom bombardment mass spectrometry (HPLC-FABMS) is described for determining the rates at which peptide amide hydrogens in proteins undergo isotopic exchange. Horse heart cytochrome c was incubated in D2O as a function of time and temperature to effect isotopic exchange, transferred into slow exchange conditions (pH 2-3, 0 degrees C), and fragmented with pepsin. The number of peptide amide deuterons present in the proteolytic peptides was deduced from their molecular weights, which were determined following analysis of the digest by HPLC-FABMS. The present results demonstrate that the exchange rates of amide hydrogens in cytochrome c range from very rapid (k > 140 h-1) to very slow (k < 0.002 h-1). The deuterium content of specific segments of the protein was determined as a function of incubation temperature and used to indicate participation of these segments in conformational changes associated with heating of cytochrome c. For the present HPLC-FABMS system, approximately 5 nmol of protein were used for each determination. Results of this investigation indicate that the combination of protein fragmentation and HPLC-FABMS is relatively free of constraints associated with other analytical methods used for this purpose and may be a general method for determining hydrogen exchange rates in specific segments of proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-speed and high-resolution UPLC separation at zero degrees Celsius.

            The conformational properties of proteins can be probed with hydrogen/deuterium exchange mass spectrometry (HXMS). In order to maintain the deuterium label during LC/MS analyses, chromatographic separation must be done rapidly (usually in under 8-10 min) and at 0 degrees C. Traditional RP-HPLC with approximately 3-mum particles has shown generally poor chromatographic performance under these conditions and thereby has been prohibitive for HXMS analyses of larger proteins and many protein complexes. Ultraperformance liquid chromatography (UPLC) employs particles smaller than 2 mum in diameter to achieve superior resolution, speed, and sensitivity as compared to HPLC. UPLC has previously been shown to be compatible with the fast separation and low temperature requirements of HXMS. Here we present construction and validation of a custom UPLC system for HXMS. The system is based on the Waters nanoACQUITY platform and contains a Peltier-cooled module that houses the injection and switching valves, online pepsin digestion column, and C-18 analytical separation column. Single proteins in excess of 95 kDa and a four-protein mixture in excess of 250 kDa have been used to validate the performance of this new system. Near-baseline resolution was achieved in 6-min separations at 0 degrees C and displayed a median chromatographic peak width of approximately 2.7 s at half-height. Deuterium recovery was similar to that obtained using a conventional HPLC and ice bath. This new system represents a significant advancement in HXMS technology that is expected to make the technique more accessible and mainstream in the near future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Differential hydrogen/deuterium exchange mass spectrometry analysis of protein-ligand interactions.

              Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule-receptor interactions, this technique has also been applied to study protein-protein complexes, such as mapping antibody-antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein-ligand interactions has had an impact on biology and drug discovery.
                Bookmark

                Author and article information

                Journal
                Biochemistry
                Biochemistry
                bi
                bichaw
                Biochemistry
                American Chemical Society
                0006-2960
                1520-4995
                10 February 2015
                10 February 2014
                11 March 2014
                : 53
                : 9
                : 1511-1520
                Affiliations
                [1] Department of Chemistry and Department of Biology, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599, United States
                [§ ]Department of Chemistry & Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
                Author notes
                [* ]Present address: U.S. Food and Drug Administration, CFSAN/HFS-707, 5100 Paint Branch Parkway, College Park, MD 20740. E-mail: Christine.Parker@ 123456fda.hhs.gov . Telephone: (240) 402-2019.
                Article
                10.1021/bi401536m
                3970815
                24512177
                5544434d-10d5-4baf-96aa-dca35c48c966
                Copyright © 2014 American Chemical Society
                History
                : 15 November 2013
                : 07 February 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                bi401536m
                bi-2013-01536m

                Biochemistry
                Biochemistry

                Comments

                Comment on this article