21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Photosynthetic capacity of senescent leaves for a subtropical broadleaf deciduous tree species Liquidambar formosana Hance

      research-article
      1 , 2 , 1 , , 1
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Photosynthetic capacity and leaf life span generally determine how much carbon a plant assimilates during the growing season. Leaves of deciduous tree species start senescence in late season, but whether the senescent leaves still retain capacity of carbon assimilation remains a question. In this study, we investigated leaf phenology and photosynthesis of a subtropical broadleaf deciduous tree species Liquidambar formosana Hance in the central southern continental China. The results show that L. formosana has extended leaf senescence (more than 2 months) with a substantial number of red leaves persisting on the tree. Leaf photosynthetic capacity decreases over season, but the senescent red leaves still maintain relatively high photosynthetic capacity at 42%, 66% and 66% of the mature leaves for net photosynthesis rate, apparent quantum yield, and quantum yield at the light compensation point, respectively. These results indicate that L. formosana may still contribute to carbon sink during leaf senescence.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Leaf senescence.

          Leaf senescence constitutes the final stage of leaf development and is critical for plants' fitness as nutrient relocation from leaves to reproducing seeds is achieved through this process. Leaf senescence involves a coordinated action at the cellular, tissue, organ, and organism levels under the control of a highly regulated genetic program. Major breakthroughs in the molecular understanding of leaf senescence were achieved through characterization of various senescence mutants and senescence-associated genes, which revealed the nature of regulatory factors and a highly complex molecular regulatory network underlying leaf senescence. The genetically identified regulatory factors include transcription regulators, receptors and signaling components for hormones and stress responses, and regulators of metabolism. Key issues still need to be elucidated, including cellular-level analysis of senescence-associated cell death, the mechanism of coordination among cellular-, organ-, and organism-level senescence, the integration mechanism of various senescence-affecting signals, and the nature and control of leaf age.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Increased activity of northern vegetation inferred from atmospheric CO2 measurements

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation.

              Leaf senescence is an essential developmental process that impacts dramatically on crop yields and involves altered regulation of thousands of genes and many metabolic and signaling pathways, resulting in major changes in the leaf. The regulation of senescence is complex, and although senescence regulatory genes have been characterized, there is little information on how these function in the global control of the process. We used microarray analysis to obtain a high-resolution time-course profile of gene expression during development of a single leaf over a 3-week period to senescence. A complex experimental design approach and a combination of methods were used to extract high-quality replicated data and to identify differentially expressed genes. The multiple time points enable the use of highly informative clustering to reveal distinct time points at which signaling and metabolic pathways change. Analysis of motif enrichment, as well as comparison of transcription factor (TF) families showing altered expression over the time course, identify clear groups of TFs active at different stages of leaf development and senescence. These data enable connection of metabolic processes, signaling pathways, and specific TF activity, which will underpin the development of network models to elucidate the process of senescence.
                Bookmark

                Author and article information

                Contributors
                zxp@hunnu.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 July 2017
                24 July 2017
                2017
                : 7
                : 6323
                Affiliations
                [1 ]ISNI 0000 0001 0089 3695, GRID grid.411427.5, College of Resource and Environment Science, , Hunan Normal University, ; Changsha, 410081 China
                [2 ]ISNI 0000 0004 0367 2697, GRID grid.1014.4, School of the Environment & National Centre for Groundwater Research and Training, , Flinders University, ; Adelaide, SA 5001 Australia
                Author information
                http://orcid.org/0000-0001-5425-6974
                Article
                6629
                10.1038/s41598-017-06629-7
                5524682
                28740081
                554a26ce-c944-4025-b033-456a366583ac
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 4 October 2016
                : 15 June 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article