4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Low-pressure hydrogenolysis of glycerol to propylene glycol

      , , ,
      Applied Catalysis A: General
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: not found
          • Article: not found

          BIODIESEL PRODUCTION FROM OILS AND FATS WITH HIGH FREE FATTY ACIDS

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Transesterification of soybean oil with zeolite and metal catalysts

            G Suppes (2004)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Metabolic engineering of propanediol pathways.

              Microbial fermentation is an important technology for the conversion of renewable resources to chemicals. In this paper, we describe the application of metabolic engineering for the development of two new fermentation processes: the microbial conversion of sugars to 1,3-propanediol (1,3-PD) and 1,2-propanediol (1,2-PD). A variety of naturally occurring organisms ferment glycerol to 1,3-PD, but no natural organisms ferment sugars directly to 1,3-PD. We first describe the fed-batch fermentation of glycerol to 1,3-PD by Klebsiella pneumoniae. We then present various approaches for the conversion of sugars to 1,3-PD, including mixed-culture fermentation, cofermentation of glycerol and glucose, and metabolic engineering of a "sugars to 1,3-PD" pathway in a single organism. Initial results are reported for the expression of genes from the K. pneumoniae 1,3-PD pathway in Saccharomyces cerevisiae. The best naturally occurring organism for the fermentation of sugars to 1,2-PD is Thermoanaerobacterium thermosaccharolyticum. We describe the fermentation of several different sugars to 1,2-PD by this organism in batch and continuous culture. We report that Escherichia coli strains engineered to express either aldose reductase or glycerol dehydrogenase convert glucose to (R)-1,2-PD. We then analyze the ultimate potential of fermentation processes for the production of propanediols. Linear optimization studies indicate that, under aerobic conditions, propanediol yields that approach the theoretical maximum are possible and CO2 is the primary coproduct. Without the need to produce acetate, final product titers in the range of 100 g/L should be possible; the high titers and low coproduct levels should make product recovery and purification straightforward. The examples given in this paper illustrate the importance of metabolic engineering for fermentation process development in general.
                Bookmark

                Author and article information

                Journal
                Applied Catalysis A: General
                Applied Catalysis A: General
                Elsevier BV
                0926860X
                March 2005
                March 2005
                : 281
                : 1-2
                : 225-231
                Article
                10.1016/j.apcata.2004.11.033
                5550a1f1-5377-439b-8588-a2fcc6c0009e
                © 2005

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article