17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Long-range interactions between substitutional nitrogen dopants in graphene: electronic properties calculations

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Being a true two-dimensional crystal, graphene has special properties. In particular, a point-like defect in graphene may have effects in the long range. This peculiarity questions the validity of using a supercell geometry in an attempt to explore the properties of an isolated defect. Still, this approach is often used in ab-initio electronic structure calculations, for instance. How does this approach converge with the size of the supercell is generally not tackled for the obvious reason of keeping the computational load to an affordable level. The present paper addresses the problem of substitutional nitrogen doping of graphene. DFT calculations have been performed for 9x9 and 10x10 supercells. Although these calculations correspond to N concentrations that differ by about 10%, the local densities of states on and around the defects are found to depend significantly on the supercell size. Fitting the DFT results by a tight-binding Hamiltonian makes it possible to explore the effects of a random distribution of the substitutional N atoms, in the case of finite concentrations, and to approach the case of an isolated impurity when the concentration vanishes. The tight-binding Hamiltonian is used to calculate the STM image of graphene around an isolated N atom. STM images are also calculated for graphene doped with 0.5 % concentration of nitrogen. The results are discussed in the light of recent experimental data and the conclusions of the calculations are extended to other point defects in graphene.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: not found
          • Article: not found

          Wave Functions for Impurity Levels

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Charge transport in chemically doped 2D graphene.

            We report on a numerical study of electronic transport in chemically doped 2D graphene materials. By using ab initio calculations, a self-consistent scattering potential is derived for boron and nitrogen substitutions, and a fully quantum-mechanical Kubo-Greenwood approach is used to evaluate the resulting charge mobilities and conductivities of systems with impurity concentration ranging within [0.5, 4.0]%. Even for a doping concentration as large as 4.0%, the conduction is marginally affected by quantum interference effects, preserving therefore remarkable transport properties, even down to the zero temperature limit. As a result of the chemical doping, electron-hole mobilities and conductivities are shown to become asymmetric with respect to the Dirac point.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Visualizing Individual Nitrogen Dopants in Monolayer Graphene

              In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy (STM), Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.
                Bookmark

                Author and article information

                Journal
                30 May 2012
                2012-07-19
                Article
                10.1103/PhysRevB.86.045448
                1205.6630
                5560c278-6ec1-4545-a6cd-e97763d1049b

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.mtrl-sci
                ccsd

                Comments

                Comment on this article