18
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Natural Product Extract of Dicksonia sellowiana Induces Endothelium-Dependent Relaxations by a Redox-Sensitive Src- and Akt-Dependent Activation of eNOS in Porcine Coronary Arteries

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims: The consumption of polyphenol-rich food is associated with a decreased mortality from coronary diseases. This study examined whether a standardized hydroalcoholic extract of Dicksonia sellowiana (HEDS) triggered endothelium-dependent relaxations in porcine coronary artery rings and characterized the underlying mechanism. Methods: The phosphorylation level of Src, Akt and eNOS was assessed by Western blot analysis, the formation of reactive oxygen species by dihydroethidine staining and the level of eNOS Ser1177 phosphorylation by immunohistochemical staining in sections of coronary arteries. Results: HEDS-induced endothelium-dependent relaxations were strongly reduced by Nω-nitro- L-arginine, an eNOS inhibitor, and by its combination with charybdotoxin plus apamin, inhibitors of endothelium-derived hyperpolarizing factor-mediated responses. These relaxations were markedly reduced by MnTMPyP (a membrane-permeant mimetic of superoxide dismutase), polyethylene glycol catalase (PEG-catalase; a membrane-permeant analog of catalase), and by wortmannin (an inhibitor of PI3-kinase). HEDS-induced sustained phosphorylation of Akt and eNOS in endothelial cells was abolished by MnTMPyP, PEG-catalase and wortmannin. Oral administration of HEDS induced a significant decrease of mean arterial pressure in spontaneously hypertensive rats. Conclusion: These findings indicate that HEDS caused endothelium-dependent relaxations of coronary artery rings through the redox-sensitive activation of the endothelial PI3-kinase/Akt pathway leading to the subsequent activation of eNOS by phosphorylation. HEDS also has antihypertensive properties.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals.

          Epidemiology suggests that Mediterranean diets are associated with reduced risk of cardiovascular disease. Because monocyte adhesion to the endothelium is crucial in early atherogenesis, we evaluated whether typical olive oil and red wine polyphenols affect endothelial-leukocyte adhesion molecule expression and monocyte adhesion. Phytochemicals in olive oil and red wine, including oleuropein, hydroxytyrosol, tyrosol, elenolic acid, and resveratrol, with or without antioxidant activity, were incubated with human umbilical vein endothelial cells for 30 minutes, followed by co-incubation with bacterial lipopolysaccharide or cytokines to trigger adhesion molecule expression. At nutritionally relevant concentrations, only oleuropein, hydroxytyrosol, and resveratrol, possessing a marked antioxidant activity, reduced monocytoid cell adhesion to stimulated endothelium, as well as vascular cell adhesion molecule-1 (VCAM-1) mRNA and protein by Northern analysis and cell surface enzyme immunoassay. Reporter gene assays with deletional VCAM-1 promoter constructs indicated the relevance of nuclear factor-kappaB, activator protein-1, and possibly GATA binding sites in mediating VCAM-1 transcriptional inhibition. The involvement of nuclear factor-kappaB and activator protein-1 was finally demonstrated at electrophoretic mobility shift assays. Olive oil and red wine antioxidant polyphenols at nutritionally relevant concentrations transcriptionally inhibit endothelial adhesion molecule expression, thus partially explaining atheroprotection from Mediterranean diets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis.

            The endothelium is a source of reactive oxygen species in short-term models of hypercholesterolemia and atherosclerosis. We examined a chronic model of atherosclerosis for increased vascular production of superoxide (O2-.) and determined whether endothelial overexpression of superoxide dismutase (SOD) would improve endothelium-dependent relaxation. Superoxide generation was 3 times higher in isolated aortas from Watanabe heritable hyperlipidemic (WHHL) rabbits (2 to 4 years old) compared with aortas from New Zealand White (NZ) rabbits (43+/-10 versus 14+/-2 relative light units x min(-1) x mm(-2), n=9, P<0.05). After in vitro transduction with adenovirus containing the gene for CuZn-SOD (AdCMVCuZn-SOD) or extracellular SOD (AdCMVEC-SOD), endothelial O2-. levels in WHHL aortas were significantly reduced. Gene transfer of SOD to WHHL aortas, however, failed to improve the impaired relaxation to acetylcholine or calcium ionophore. By use of the oxidative fluorescent dye hydroethidine, an in situ assay indicated markedly increased generation of O2-. throughout the wall of WHHL aorta, especially within layers of smooth muscle. This finding was confirmed by demonstrating increased O2-. levels in smooth muscle cells cultured from WHHL aorta. We conclude that elevated O2-. levels in atherosclerotic vessels are not confined to the endothelium but occur throughout the vascular wall, including smooth muscle cells. Reduction in endothelial O2-. levels is not sufficient to improve endothelium-dependent relaxation. Generation of reactive oxygen species within the media may contribute to vasomotor dysfunction in atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Src kinase mediates phosphatidylinositol 3-kinase/Akt-dependent rapid endothelial nitric-oxide synthase activation by estrogen.

              17beta-Estradiol activates endothelial nitric oxide synthase (eNOS), enhancing nitric oxide (NO) release from endothelial cells via the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. The upstream regulators of this pathway are unknown. We now demonstrate that 17beta-estradiol rapidly activates eNOS through Src kinase in human endothelial cells. The Src family kinase specific-inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) abrogates 17beta-estradiol- but not ionomycin-stimulated NO release. Consistent with these results, PP2 blocked 17beta-estradiol-induced Akt phosphorylation but did not inhibit NO release from cells transduced with a constitutively active Akt. PP2 abrogated 17beta-estradiol-induced activation of PI3-kinase, indicating that the PP2-inhibitable kinase is upstream of PI3-kinase and Akt. A 17beta-estradiol-induced estrogen receptor/c-Src association correlated with rapid c-Src phosphorylation. Moreover, transfection of kinase-dead c-Src inhibited 17beta-estradiol-induced Akt phosphorylation, whereas constitutively active c-Src increased basal Akt phosphorylation. Estrogen stimulation of murine embryonic fibroblasts with homozygous deletions of the c-src, fyn, and yes genes failed to induce Akt phosphorylation, whereas cells maintaining c-Src expression demonstrated estrogen-induced Akt activation. Estrogen rapidly activated c-Src inducing an estrogen receptor, c-Src, and P85 (regulatory subunit of PI3-kinase) complex formation. This complex formation results in the successive activation of PI3-kinase, Akt, and eNOS with consequent enhanced NO release, implicating c-Src as a critical upstream regulator of the estrogen-stimulated PI3-kinase/Akt/eNOS pathway.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2012
                June 2012
                25 April 2012
                : 49
                : 4
                : 284-298
                Affiliations
                aUMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France; bDepartment of Pharmacology, Centro Politécnico, and cDepartment of Pharmaceutical Sciences, Universidade Federal do Paraná, Curitiba, and dDepartment of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, Brazil
                Author notes
                *Dr. Valérie B. Schini-Kerth, UMR CNRS 7213, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie, Université de Strasbourg, 74, route du Rhin, BP 60024, FR–67401 Illkirch (France), Tel. +33 3 68 85 41 27, E-Mail valerie.schini-kerth@unistra.fr
                Article
                336647 J Vasc Res 2012;49:284–298
                10.1159/000336647
                22538863
                556531c6-943d-44f4-935f-6c19d437c750
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 10 December 2010
                : 10 January 2012
                Page count
                Figures: 11, Pages: 15
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Porcine coronary artery, Dicksonia sellowiana ,PI3-kinase/Akt pathway,Endothelium,Nitric oxide

                Comments

                Comment on this article