2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Expression Patterns and Associated Clinical Parameters of Human Endogenous Retrovirus-H Long Terminal Repeat-Associating Protein 2 and Transmembrane and Immunoglobulin Domain Containing 2 in Oral Squamous Cell Carcinoma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human endogenous retrovirus-H long terminal repeat-associating protein 2 (HHLA2) and transmembrane and immunoglobulin domain containing 2 (TMIGD2) are new immune checkpoint molecules of the B7:CD28 family; however, little research has been performed on these immune checkpoint molecules. In this study, we used oral squamous cells carcinoma (OSCC) tissue microarrays and immunohistochemistry methods to investigate the expression patterns of HHLA2 and TMIGD2 in OSCC. After comparing the HHLA2 and TMIGD2 expression levels in OSCC, dysplasia, and mucosa, we found increased HHLA2 expression in OSCC and dysplasia, while the TMIGD2 expression was decreased in OSCC and dysplasia. Using the Kaplan-Meier method and log-rank test, we found that higher HHLA2 or TMIGD2 expression levels in OSCC indicate poor prognosis. Furthermore, two-tailed Pearson's statistical analysis revealed that the HHLA2 expression levels in OSCC, dysplasia, and mucosa were positively correlated with the T cell immunoglobulin and mucin-domain containing-3 (TIM3), lymphocyte-activation gene 3 (LAG3), B7 homolog 3 protein (B7-H3), B7 homolog 4 protein (B7H4), and V-domain Ig suppressor of T cell activation (VISTA) levels, while the TMIGD2 expression levels in OSCC, dysplasia, and mucosa were inversely correlated with the TIM3, LAG3, and B7H3 levels. Our current study demonstrates that HHLA2 may serve as an immune target for OSCC therapy and that the TMIGD2 expression level in OSCC could forecast patient prognosis.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          The third group of the B7-CD28 immune checkpoint family: HHLA2, TMIGD2, B7x, and B7-H3.

          The B7-CD28 family of ligands and receptors play important roles in T-cell co-stimulation and co-inhibition. Phylogenetically they can be divided into three groups. The recent discovery of the new molecules (B7-H3 [CD276], B7x [B7-H4/B7S1], and HHLA2 [B7H7/B7-H5]/TMIGD2 [IGPR-1/CD28H]) of the group III has expanded therapeutic possibilities for the treatment of human diseases. In this review, we describe the discovery, structure, and function of B7-H3, B7x, HHLA2, and TMIGD2 in immune regulation. We also discuss their roles in important pathological states such as cancers, autoimmune diseases, transplantation, and infection. Various immunotherapeutical approaches are emerging including antagonistic monoclonal antibodies and agonistic fusion proteins to inhibit or potentiate these molecules and pathways in cancers and autoimmune diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function.

            T-cell costimulation and coinhibition generated by engagement of the B7 family and their receptor CD28 family are of central importance in regulating the T-cell response, making these pathways very attractive therapeutic targets. Here we describe HERV-H LTR-associating protein 2 (HHLA2) as a member of the B7 family that shares 10-18% amino acid identity and 23-33% similarity to other human B7 proteins and phylogenetically forms a subfamily with B7x and B7-H3 within the family. HHLA2 is expressed in humans but not in mice, which is unique within the B7 and CD28 families. HHLA2 protein is constitutively expressed on the surface of human monocytes and is induced on B cells after stimulation with LPS and IFN-γ. HHLA2 does not interact with other known members of the CD28 family or the B7 family, but does bind a putative receptor that is constitutively expressed not only on resting and activated CD4 and CD8 T cells but also on antigen-presenting cells. HHLA2 inhibits proliferation of both CD4 and CD8 T cells in the presence of T-cell receptor signaling. In addition, HHLA2 significantly reduces cytokine production by T cells including IFN-γ, TNF-α, IL-5, IL-10, IL-13, IL-17A, and IL-22. Thus, we have identified a unique B7 pathway that is able to inhibit human CD4 and CD8 T-cell proliferation and cytokine production. This unique human T-cell coinhibitory pathway may afford unique strategies for the treatment of human cancers, autoimmune disorders, infection, and transplant rejection and may help to design better vaccines.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              B7-H5 costimulates human T cells via CD28H

              The B7/CD28 family has profound modulatory effects in immune responses and constitutes important targets for the development of novel therapeutic drugs against human diseases. Here we describe a new CD28 homolog (CD28H) that has unique functions in the regulation of the human immune response and is absent in mice. CD28H is constitutively expressed on all naive T cells. Repetitive antigenic exposure, however, induces a complete loss of CD28H on many T cells, and CD28H-negative T cells have a phenotype of terminal differentiation and senescence. After extensive screening in a receptor array, a B7-like molecule, B7 homolog 5 (B7-H5), was identified as a specific ligand for CD28H. B7-H5 is constitutively found in macrophages and could be induced on dendritic cells. The B7-H5/CD28H interaction co-stimulates human T cell growth and cytokine production, selectively via an AKT-dependent signaling cascade. Our study identifies a novel co-stimulatory pathway regulating human T cell responses.
                Bookmark

                Author and article information

                Contributors
                Journal
                Dis Markers
                Dis. Markers
                DM
                Disease Markers
                Hindawi
                0278-0240
                1875-8630
                2019
                7 April 2019
                : 2019
                : 5421985
                Affiliations
                1The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
                2Department of Oral Maxillofacial-Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
                Author notes

                Guest Editor: Yasuhiro Miki

                Author information
                http://orcid.org/0000-0003-0932-8013
                Article
                10.1155/2019/5421985
                6476002
                31089395
                558400f7-76b6-4de8-936a-c7d571c21c45
                Copyright © 2019 Yao Xiao et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 December 2018
                : 21 January 2019
                : 13 February 2019
                Funding
                Funded by: Hubei Province Natural Science Funds for Distinguished Young Scholar
                Award ID: 2017CFA062
                Funded by: Fundamental Research Funds for the Central Universities of China
                Award ID: 2042017kf0171
                Funded by: National Natural Science Foundation of China
                Award ID: 81672667
                Award ID: 81672668
                Award ID: 81874131
                Categories
                Research Article

                Comments

                Comment on this article