5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nutritional Modulation of Immune Function: Analysis of Evidence, Mechanisms, and Clinical Relevance

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It is well-established that the nutritional deficiency or inadequacy can impair immune functions. Growing evidence suggests that for certain nutrients increased intake above currently recommended levels may help optimize immune functions including improving defense function and thus resistance to infection, while maintaining tolerance. This review will examine the data representing the research on prominent intervention agents n-3 polyunsaturated fatty acids (PUFA), micronutrients (zinc, vitamins D and E), and functional foods including probiotics and tea components for their immunological effects, working mechanisms, and clinical relevance. Many of these nutritive and non-nutritive food components are related in their functions to maintain or improve immune function including inhibition of pro-inflammatory mediators, promotion of anti-inflammatory functions, modulation of cell-mediated immunity, alteration of antigen-presenting cell functions, and communication between the innate and adaptive immune systems. Both animal and human studies present promising findings suggesting a clinical benefit of vitamin D, n-3 PUFA, and green tea catechin EGCG in autoimmune and inflammatory disorders, and vitamin D, vitamin E, zinc, and probiotics in reduction of infection. However, many studies report divergent and discrepant results/conclusions due to various factors. Chief among them, and thus call for attention, includes more standardized trial designs, better characterized populations, greater consideration for the intervention doses used, and more meaningful outcome measurements chosen.

          Related collections

          Most cited references 201

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Estimating the Global Prevalence of Zinc Deficiency: Results Based on Zinc Availability in National Food Supplies and the Prevalence of Stunting

          Background Adequate zinc nutrition is essential for adequate growth, immunocompetence and neurobehavioral development, but limited information on population zinc status hinders the expansion of interventions to control zinc deficiency. The present analyses were conducted to: (1) estimate the country-specific prevalence of inadequate zinc intake; and (2) investigate relationships between country-specific estimated prevalence of dietary zinc inadequacy and dietary patterns and stunting prevalence. Methodology and Principal Findings National food balance sheet data were obtained from the Food and Agriculture Organization of the United Nations. Country-specific estimated prevalence of inadequate zinc intake were calculated based on the estimated absorbable zinc content of the national food supply, International Zinc Nutrition Consultative Group estimated physiological requirements for absorbed zinc, and demographic data obtained from United Nations estimates. Stunting data were obtained from a recent systematic analysis based on World Health Organization growth standards. An estimated 17.3% of the world’s population is at risk of inadequate zinc intake. Country-specific estimated prevalence of inadequate zinc intake was negatively correlated with the total energy and zinc contents of the national food supply and the percent of zinc obtained from animal source foods, and positively correlated with the phytate: zinc molar ratio of the food supply. The estimated prevalence of inadequate zinc intake was correlated with the prevalence of stunting (low height-for-age) in children under five years of age (r = 0.48, P<0.001). Conclusions and Significance These results, which indicate that inadequate dietary zinc intake may be fairly common, particularly in Sub-Saharan Africa and South Asia, allow inter-country comparisons regarding the relative likelihood of zinc deficiency as a public health problem. Data from these analyses should be used to determine the need for direct biochemical and dietary assessments of population zinc status, as part of nationally representative nutritional surveys targeting countries estimated to be at high risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation.

             G Penna,  L Adorini (2000)
            1 Alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D3, is a potent immunomodulatory agent. Here we show that dendritic cells (DCs) are major targets of 1,25(OH)2D3-induced immunosuppressive activity. 1,25(OH)2D3 prevents the differentiation in immature DCs of human monocytes cultured with GM-CSF and IL-4. Addition of 1,25(OH)2D3 during LPS-induced maturation maintains the immature DC phenotype characterized by high mannose receptor and low CD83 expression and markedly inhibits up-regulation of the costimulatory molecules CD40, CD80, and CD86 and of class II MHC molecules. This is associated with a reduced capacity of DCs to activate alloreactive T cells, as determined by decreased proliferation and IFN-gamma secretion in mixed leukocyte cultures. 1, 25(OH)2D3 also affects maturing DCs, leading to inhibition of IL-12p75 and enhanced IL-10 secretion upon activation by CD40 ligation. In addition, 1,25(OH)2D3 promotes the spontaneous apoptosis of mature DCs. The modulation of phenotype and function of DCs matured in the presence of 1,25(OH)2D3 induces cocultured alloreactive CD4+ cells to secrete less IFN-gamma upon restimulation, up-regulate CD152, and down-regulate CD154 molecules. The inhibition of DC differentiation and maturation as well as modulation of their activation and survival leading to T cell hyporesponsiveness may explain the immunosuppressive activity of 1, 25(OH)2D3.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Zinc in Infection and Inflammation

              Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                15 January 2019
                2018
                : 9
                Affiliations
                1Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University , Boston, MA, United States
                2Department of Food and Nutrition, Chungbuk National University , Cheongju, South Korea
                Author notes

                Edited by: Emilio Jirillo, Università degli Studi di Bari, Italy

                Reviewed by: Francisco José Pérez-Cano, University of Barcelona, Spain; Claudio Nicoletti, Università degli Studi di Firenze, Italy

                *Correspondence: Dayong Wu dayong.wu@ 123456tufts.edu

                This article was submitted to Nutritional Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.03160
                6340979
                30697214
                Copyright © 2019 Wu, Lewis, Pae and Meydani.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 248, Pages: 19, Words: 17861
                Funding
                Funded by: Agricultural Research Service 10.13039/100007917
                Categories
                Immunology
                Review

                Immunology

                immune system, vitamin d, vitamin e, n-3 pufa, probiotics, green egcg, zinc

                Comments

                Comment on this article