7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autonomous micro aerial vehicles still struggle with fast and agile maneuvers, dynamic environments, imperfect sensing, and state estimation drift. Autonomous drone racing brings these challenges to the fore. Human pilots can fly a previously unseen track after a handful of practice runs. In contrast, state-of-the-art autonomous navigation algorithms require either a precise metric map of the environment or a large amount of training data collected in the track of interest. To bridge this gap, we propose an approach that can fly a new track in a previously unseen environment without a precise map or expensive data collection. Our approach represents the global track layout with coarse gate locations, which can be easily estimated from a single demonstration flight. At test time, a convolutional network predicts the poses of the closest gates along with their uncertainty. These predictions are incorporated by an extended Kalman filter to maintain optimal maximum-a-posteriori estimates of gate locations. This allows the framework to cope with misleading high-variance estimates that could stem from poor observability or lack of visible gates. Given the estimated gate poses, we use model predictive control to quickly and accurately navigate through the track. We conduct extensive experiments in the physical world, demonstrating agile and robust flight through complex and diverse previously-unseen race tracks. The presented approach was used to win the IROS 2018 Autonomous Drone Race Competition, outracing the second-placing team by a factor of two.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: not found
          • Article: not found

          SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Comprehensive review of neural network-based prediction intervals and new advances.

            This paper evaluates the four leading techniques proposed in the literature for construction of prediction intervals (PIs) for neural network point forecasts. The delta, Bayesian, bootstrap, and mean-variance estimation (MVE) methods are reviewed and their performance for generating high-quality PIs is compared. PI-based measures are proposed and applied for the objective and quantitative assessment of each method's performance. A selection of 12 synthetic and real-world case studies is used to examine each method's performance for PI construction. The comparison is performed on the basis of the quality of generated PIs, the repeatability of the results, the computational requirements and the PIs variability with regard to the data uncertainty. The obtained results in this paper indicate that: 1) the delta and Bayesian methods are the best in terms of quality and repeatability, and 2) the MVE and bootstrap methods are the best in terms of low computational load and the width variability of PIs. This paper also introduces the concept of combinations of PIs, and proposes a new method for generating combined PIs using the traditional PIs. Genetic algorithm is applied for adjusting the combiner parameters through minimization of a PI-based cost function subject to two sets of restrictions. It is shown that the quality of PIs produced by the combiners is dramatically better than the quality of PIs obtained from each individual method.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              DroNet: Learning to Fly by Driving

                Bookmark

                Author and article information

                Journal
                15 October 2018
                Article
                1810.06224
                558fbe5c-c9a4-4f89-ab34-8c8226a2ad18

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                6 pages (+1 references)
                cs.RO

                Robotics
                Robotics

                Comments

                Comment on this article