6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Secreted Mucins on the Ocular Surface

      1
      Investigative Opthalmology & Visual Science
      Association for Research in Vision and Ophthalmology (ARVO)

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          Structural organization and classification of the human mucin genes.

          The cells of living organisms in contact with the external environment are constantly attacked by different kinds of substances such as micro-organisms, toxins, and pollutants. With evolution, defense mechanisms, such as the secretion of mucus has been developed. Mucins are the main components of mucus. They are synthesized and secreted by specialized cells of the epithelium and in some case, by non mucin-secreting cells. Little was known about the structure of mucins until a decade ago. This is principally due to heavy glycosylation of mucins, which complicated their analysis. With the application of molecular biological methods, structures of the mucin core peptides (apomucins) are beginning to be elucidated. A total of eleven human mucin (MUC) genes have been identified and numbered in chronological order of their description: MUC1-4, MUC5AC, MUC5B, MUC6-8, and MUC11-12. Of these, the complete cDNA sequence are published only for six mucins MUC1, MUC2, MUC4, MUC5B, MUC5AC, and MUC7. Human mucin genes, in general, show three common features: I) a nucleotide tandem repeat domain; II) a predicted peptide domain containing a high percentage of serines and threonines; III) complex RNA expression. The tandem repeats in mucins make up the majority of the backbone. Related to their structure, mucins can be classified in three distinct sub-families: gel-forming, soluble, and membrane-bound. Each member from one family possesses common characteristics and probably specific functions. For a long time, they were thought to have the unique function of protecting and lubricating the epithelial surfaces. The study of the mucins structure as well as the relationship between structure and function show that mucins also possess other important functions, such as growth, direct implication in the fetal development, the epithelial renewal and differentiation, the epithelial integrity, carcinogenesis, and metastasis. This review presents the actual knowledge on the mucins structure and the best-characterized function related to their structure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aqueous Tear Deficiency Increases Conjunctival Interferon-γ (IFN-γ) Expression and Goblet Cell Loss.

            To investigate the hypothesis that increased interferon-γ (IFN-γ) expression is associated with conjunctival goblet cell loss in subjects with tear dysfunction.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment.

              The N terminus of the human MUC2 mucin (amino acids 1-1397) has been expressed as a recombinant tagged protein in Chinese hamster ovary cells. The intracellular form was found to be an endoglycosidase H-sensitive monomer, whereas the secreted form was an oligomer that gave monomers upon disulfide bond reduction. The secreted MUC2 N terminus contained a trypsin-resistant core fragment. Edman sequencing and mass spectrometry of the peptides obtained localized this core fragment to the C-terminal end of the recombinant protein. This core retained its oligomeric nature with an apparent mass of approximately 240 kDa. Upon reduction, peptides of approximately 85 kDa were found, suggesting that the N terminus forms trimers. This interpretation was also supported by gel electrophoresis and gel filtration of the intact MUC2 N terminus. Electron microscopy revealed three globular domains each linked via an extended and flexible region to a central part in a trefoil-like manner. Immunostaining with gold-labeled antibodies localized the N-terminal end to the three globular structures, and the antibodies directed against the Myc and green fluorescent protein tags attached at the C terminus localized these to the stalk side of the central trefoil. The N terminus of the MUC2 mucin is thus assembled into trimers that contain proteolytically stable parts, suggesting that MUC2 can only be partly degraded by intestinal proteases and thus is able to maintain a mucin network protecting the intestine.
                Bookmark

                Author and article information

                Journal
                Investigative Opthalmology & Visual Science
                Invest. Ophthalmol. Vis. Sci.
                Association for Research in Vision and Ophthalmology (ARVO)
                1552-5783
                November 01 2018
                November 27 2018
                : 59
                : 14
                : DES151
                Affiliations
                [1 ]Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
                Article
                10.1167/iovs.17-23623
                30481820
                5591de31-b225-4bce-9657-c02ddb615977
                © 2018

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article