22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          The reduction of graphene oxide

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            P25-graphene composite as a high performance photocatalyst.

            Herein we obtained a chemically bonded TiO(2) (P25)-graphene nanocomposite photocatalyst with graphene oxide and P25, using a facile one-step hydrothermal method. During the hydrothermal reaction, both of the reduction of graphene oxide and loading of P25 were achieved. The as-prepared P25-graphene photocatalyst possessed great adsorptivity of dyes, extended light absorption range, and efficient charge separation properties simultaneously, which was rarely reported in other TiO(2)-carbon photocatalysts. Hence, in the photodegradation of methylene blue, a significant enhancement in the reaction rate was observed with P25-graphene, compared to the bare P25 and P25-CNTs with the same carbon content. Overall, this work could provide new insights into the fabrication of a TiO(2)-carbon composite as high performance photocatalysts and facilitate their application in the environmental protection issues.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Hollow Micro-/Nanostructures: Synthesis and Applications

                Bookmark

                Author and article information

                Journal
                JMCAET
                J. Mater. Chem. A
                J. Mater. Chem. A
                Royal Society of Chemistry (RSC)
                2050-7488
                2050-7496
                2014
                August 13 2014
                : 2
                : 39
                : 16403-16409
                Article
                10.1039/C4TA03033H
                55928546-aa36-40bf-9b16-8278d50b821b
                © 2014
                History

                Comments

                Comment on this article