17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Magnetic Resonance Imaging of Ruptured Plaques in the Rabbit with Ultrasmall Superparamagnetic Particles of Iron Oxide

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Magnetic resonance imaging (MRI) enhanced with ultrasmall superparamagnetic particles of iron oxide (USPIO) has previously been evaluated in hyperlipidemic rabbits. The aim of this study was therefore to compare USPIO in ruptured and non-ruptured arteries in an atherosclerotic rabbit model. Methods: Atherosclerotic-like lesions were induced by the combination of endothelial abrasion and high-cholesterol diet in iliac rabbit arteries (n = 16). Rupture of atherosclerotic lesions was realized by oversized balloon angioplasty in one iliac artery, whereas the contralateral artery was used as control. USPIO (ferumoxtran-10: 1 mmol Fe/kg) was administered immediately (n = 10) or 28 days (n = 6) after injury. MRI and histological analysis were performed 7 and 35 days after injury and in control arteries. Results: In vivo MRI analysis showed extended susceptibility artifact with transluminal signal loss in all ruptured arteries 7 days after injury. In contrast, hyposignal was reduced 35 days following injury (i.e. after healing), and absent in non-ruptured arteries. Similarly, histological analysis of iron uptake was significantly increased 7 days after injury compared to healed-ruptured and control arteries. Conclusions: Accumulation ofUSPIO is significantly increased in ruptured as compared to non-ruptured arteries in the atherosclerotic rabbit model.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I.

          Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document focuses on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model.

            Restenosis is a reparative response to arterial injury occurring with percutaneous coronary revascularization. However, the quantitative characteristics of the relation between vessel injury and the magnitude of restenotic response remain unknown. This study was thus performed to determine the relation between severity of vessel wall injury and the thickness of resulting neointimal proliferation in a porcine model of coronary restenosis. Twenty-six porcine coronary artery segments in 24 pigs were subjected to deep arterial injury with use of overexpanded, percutaneously delivered tantalum wire coils. The vessels were studied microscopically 4 weeks after coil implantation to measure the relation between the extent of injury and the resulting neointimal thickness. For each wire site, a histopathologic score proportional to injury depth and the neointimal thicknesses at that site were determined. Mean injury scores were compared with both mean neointimal thickness and planimetry-derived area percent lumen stenosis. The severity of vessel injury strongly correlated with neointimal thickness and percent diameter stenosis (p less than 0.001). Neointimal proliferation resulting from a given wire was related to injury severity in adjacent wires, suggesting an interaction among effects at injured sites. If the results in this model apply to human coronary arteries, restenosis may depend on the degree of vessel injury sustained during angioplasty.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage endocytosis of superparamagnetic iron oxide nanoparticles: mechanisms and comparison of ferumoxides and ferumoxtran-10.

              Superparamagnetic iron oxides (SPIO) used as magnetic resonance (MR) contrast agents undergo specific uptake by macrophages. The purpose of this study was first to determine the mechanism of macrophage uptake for Ferumoxides by using competition experiments with specific ligands of scavenger receptors SR-A (I/II) and second, to evaluate and compare the internalization of 2 different contrast agents, Ferumoxides (SPIO) and Ferumoxtran-10 (USPIO: ultrasmall superparamagnetic iron oxide) using macrophages obtained by chemical activation of human monocytic cells. Ferumoxides and Ferumoxtran-10 are 2 MR contrast agents, composed of dextran-coated iron oxide nanoparticles. The endocytosis pathway of Ferumoxides was studied using competition experiments on mouse peritoneal macrophages in the presence of specific ligands of scavenger receptors SR-A (types I and II): polyinosinic acid and fucoidan. In vitro assays using THP-1 (human promonocyte) cells activated into macrophages were performed in the presence of the 2 superparamagnetic nanoparticles. The cellular uptake was determined by measuring the iron content using ICP-AES (inductively coupled plasma-atomic emission spectrometry) and by Prussian blue staining. In the presence of polyinosinic acid or fucoidan, the endocytosis of Ferumoxides by mouse peritoneal macrophages was inhibited. This inhibition was obtained using 10 microg/mL of scavenger receptor ligands at a concentration of 62.5 microg Fe/mL of SPIO, and a dose-dependent relationship was observed. Without competitors, the percentage of uptake of Ferumoxides by mouse peritoneal macrophages ranged between 3 and 8%. On the human activated monocyte THP-1 cell assay, Ferumoxides underwent a higher macrophage uptake (between 1.1 and 3%) compared with Ferumoxtran-10 (between 0.03 and 0.12%). This difference is attributed to the larger size of Ferumoxides nanoparticles. Competition experiments indicate that the cellular uptake of Ferumoxides involves scavenger receptor SR-A-mediated endocytosis. The comparison between Ferumoxides and Ferumoxtran-10 confirms that macrophage uptake of iron oxide nanoparticles depends mainly on the size of these contrast agents.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2007
                February 2007
                10 January 2007
                : 44
                : 2
                : 119-128
                Affiliations
                aService de Cardiologie, Ap-HP, HEGP, Unité INSERM E00-16, Faculté de Médecine, Université Paris-Descartes, Paris, bResearch Department, GUERBET, Aulnay-sous-Bois; cService d’Anatomo-Pathologie, AP-HP, HEGP, Unité INSERM U462, Faculté de Médecine, Université Paris-Descartes, Paris, France
                Article
                98484 J Vasc Res 2007;44:119–128
                10.1159/000098484
                17215583
                5593ec9d-4e6b-46eb-a64a-a28cf4f1c069
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 24 April 2006
                : 22 October 2006
                Page count
                Figures: 5, Tables: 2, References: 21, Pages: 10
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Atherosclerosis,Ultrasmall superparamagnetic particles,Magnetic resonance imaging,Plaque rupture,Macrophages,Contrast agent

                Comments

                Comment on this article