44
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Coronavirus Disease 2019–COVID-19

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out.

          SUMMARY

          In recent decades, several new diseases have emerged in different geographical areas, with pathogens including Ebola virus, Zika virus, Nipah virus, and coronaviruses (CoVs). Recently, a new type of viral infection emerged in Wuhan City, China, and initial genomic sequencing data of this virus do not match with previously sequenced CoVs, suggesting a novel CoV strain (2019-nCoV), which has now been termed severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Although coronavirus disease 2019 (COVID-19) is suspected to originate from an animal host (zoonotic origin) followed by human-to-human transmission, the possibility of other routes should not be ruled out. Compared to diseases caused by previously known human CoVs, COVID-19 shows less severe pathogenesis but higher transmission competence, as is evident from the continuously increasing number of confirmed cases globally. Compared to other emerging viruses, such as Ebola virus, avian H7N9, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 has shown relatively low pathogenicity and moderate transmissibility. Codon usage studies suggest that this novel virus has been transferred from an animal source, such as bats. Early diagnosis by real-time PCR and next-generation sequencing has facilitated the identification of the pathogen at an early stage. Since no antiviral drug or vaccine exists to treat or prevent SARS-CoV-2, potential therapeutic strategies that are currently being evaluated predominantly stem from previous experience with treating SARS-CoV, MERS-CoV, and other emerging viral diseases. In this review, we address epidemiological, diagnostic, clinical, and therapeutic aspects, including perspectives of vaccines and preventive measures that have already been globally recommended to counter this pandemic virus.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong

          Summary Background Health authorities worldwide, especially in the Asia Pacific region, are seeking effective public-health interventions in the continuing epidemic of severe acute respiratory syndrome (SARS). We assessed the epidemiology of SARS in Hong Kong. Methods We included 1425 cases reported up to April 28, 2003. An integrated database was constructed from several sources containing information on epidemiological, demographic, and clinical variables. We estimated the key epidemiological distributions: infection to onset, onset to admission, admission to death, and admission to discharge. We measured associations between the estimated case fatality rate and patients’age and the time from onset to admission. Findings After the initial phase of exponential growth, the rate of confirmed cases fell to less than 20 per day by April 28. Public-health interventions included encouragement to report to hospital rapidly after the onset of clinical symptoms, contact tracing for confirmed and suspected cases, and quarantining, monitoring, and restricting the travel of contacts. The mean incubation period of the disease is estimated to be 6.4 days (95% Cl 5.2–7.7). The mean time from onset of clinical symptoms to admission to hospital varied between 3 and 5 days, with longer times earlier in the epidemic. The estimated case fatality rate was 13.2% (9.8–16.8) for patients younger than 60 years and 43.3% (35.2–52.4) for patients aged 60 years or older assuming a parametric γ distribution. A non-parametric method yielded estimates of 6.8% (4.0–9.6) and 55.0% (45.3–64.7), respectively. Case clusters have played an important part in the course of the epidemic. Interpretation Patients’age was strongly associated with outcome. The time between onset of symptoms and admission to hospital did not alter outcome, but shorter intervals will be important to the wider population by restricting the infectious period before patients are placed in quarantine. Published online May 7, 2003 http://image.thelancet.com/extras/03art4453web.pdf
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity.

            We investigated the contributions of the structural proteins of severe acute respiratory syndrome (SARS) coronavirus (CoV) to protective immunity by expressing them individually and in combinations from a recombinant parainfluenza virus (PIV) type 3 vector called BHPIV3. This vector provided direct immunization of the respiratory tract, the major site of SARS transmission, replication, and disease. The BHPIV3/SARS recombinants were evaluated for immunogenicity and protective efficacy in hamsters, which support a high level of pulmonary SARS-CoV replication. A single intranasal administration of BHPIV3 expressing the SARS-CoV spike protein (S) induced a high titer of SARS-CoV-neutralizing serum antibodies, only 2-fold less than that induced by SARS-CoV infection. The expression of S with the two other putative virion envelope proteins, the matrix M and small envelope E proteins, did not augment the neutralizing antibody response. In absence of S, expression of M and E or the nucleocapsid protein N did not induce a detectable serum SARS-CoV-neutralizing antibody response. Immunization with BHPIV3 expressing S provided complete protection against SARS-CoV challenge in the lower respiratory tract and partial protection in the upper respiratory tract. This was augmented slightly by coexpression with M and E. Expression of M, E, or N in the absence of S did not confer detectable protection. These results identify S among the structural proteins as the only significant SARS-CoV neutralization antigen and protective antigen and show that a single mucosal immunization is highly protective in an experimental animal that supports efficient replication of SARS-CoV.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission

              Summary Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal zoonosis that causes death in 35·7% of cases. As of Feb 28, 2018, 2182 cases of MERS-CoV infection (with 779 deaths) in 27 countries were reported to WHO worldwide, with most being reported in Saudi Arabia (1807 cases with 705 deaths). MERS-CoV features prominently in the WHO blueprint list of priority pathogens that threaten global health security. Although primary transmission of MERS-CoV to human beings is linked to exposure to dromedary camels (Camelus dromedarius), the exact mode by which MERS-CoV infection is acquired remains undefined. Up to 50% of MERS-CoV cases in Saudi Arabia have been classified as secondary, occurring from human-to-human transmission through contact with asymptomatic or symptomatic individuals infected with MERS-CoV. Hospital outbreaks of MERS-CoV are a hallmark of MERS-CoV infection. The clinical features associated with MERS-CoV infection are not MERS-specific and are similar to other respiratory tract infections. Thus, the diagnosis of MERS can easily be missed, unless the doctor or health-care worker has a high degree of clinical awareness and the patient undergoes specific testing for MERS-CoV. The largest outbreak of MERS-CoV outside the Arabian Peninsula occurred in South Korea in May, 2015, resulting in 186 cases with 38 deaths. This outbreak was caused by a traveller with undiagnosed MERS-CoV infection who became ill after returning to Seoul from a trip to the Middle East. The traveller visited several health facilities in South Korea, transmitting the virus to many other individuals long before a diagnosis was made. With 10 million pilgrims visiting Saudi Arabia each year from 182 countries, watchful surveillance by public health systems, and a high degree of clinical awareness of the possibility of MERS-CoV infection is essential. In this Review, we provide a comprehensive update and synthesis of the latest available data on the epidemiology, determinants, and risk factors of primary, household, and nosocomial transmission of MERS-CoV, and suggest measures to reduce risk of transmission.
                Bookmark

                Author and article information

                Journal
                Clin Microbiol Rev
                Clin. Microbiol. Rev
                cmr
                cmr
                CMR
                Clinical Microbiology Reviews
                American Society for Microbiology (1752 N St., N.W., Washington, DC )
                0893-8512
                1098-6618
                24 June 2020
                October 2020
                24 June 2020
                : 33
                : 4
                : e00028-20
                Affiliations
                [a ]Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
                [b ]Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
                [c ]Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
                [d ]Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
                [e ]Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
                [f ]Semillero de Zoonosis, Grupo de Investigación BIOECOS, Fundación Universitaria Autónoma de las Américas, Sede Pereira, Pereira, Risaralda, Colombia
                [g ]Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Colombia
                [h ]Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Risaralda, Colombia
                [i ]Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Americas, Pereira, Risaralda, Colombia
                Author notes
                Address correspondence to Yashpal Singh Malik, malikyps@ 123456gmail.com , or Alfonso J. Rodriguez-Morales, arodriguezm@ 123456utp.edu.co .

                Citation Dhama K, Khan S, Tiwari R, Sircar S, Bhat S, Malik YS, Singh KP, Chaicumpa W, Bonilla-Aldana DK, Rodriguez-Morales AJ. 2020. Coronavirus disease 2019–COVID-19. Clin Microbiol Rev 33:e00028-20. https://doi.org/10.1128/CMR.00028-20.

                Author information
                https://orcid.org/0000-0001-7469-4752
                https://orcid.org/0000-0003-1040-3746
                https://orcid.org/0000-0002-1947-4463
                https://orcid.org/0000-0002-9412-2556
                https://orcid.org/0000-0001-9773-2192
                Article
                00028-20
                10.1128/CMR.00028-20
                7405836
                32580969
                55af550d-8e3b-4e00-9836-db35741ad8e0
                Copyright © 2020 American Society for Microbiology.

                All Rights Reserved.

                This article is made available via the PMC Open Access Subset for unrestricted noncommercial re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.

                History
                Page count
                Figures: 7, Tables: 2, Equations: 0, References: 367, Pages: 48, Words: 35415
                Product
                Categories
                Review
                Custom metadata
                October 2020
                free

                covid-19,emerging coronavirus,sars-cov-2,diagnosis,one health,therapy,vaccines

                Comments

                Comment on this article