15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Taxonomy annotation and guide tree errors in 16S rRNA databases

      research-article
      PeerJ
      PeerJ Inc.
      Taxonomy, Microbiology, Bioinformatics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sequencing of the 16S ribosomal RNA (rRNA) gene is widely used to survey microbial communities. Specialized 16S rRNA databases have been developed to support this approach including Greengenes, RDP and SILVA. Most taxonomy annotations in these databases are predictions from sequence rather than authoritative assignments based on studies of type strains or isolates. In this work, I investigated the taxonomy annotations and guide trees provided by these databases. Using a blinded test, I estimated that the annotation error rate of the RDP database is ∼10%. The branching orders of the Greengenes and SILVA guide trees were found to disagree at comparable rates with each other and with taxonomy annotations according to the training set (authoritative reference) provided by RDP, indicating that the trees have comparable quality. Pervasive conflicts between tree branching order and type strain taxonomies strongly suggest that the guide trees are unreliable guides to phylogeny. I found 249,490 identical sequences with conflicting annotations in SILVA v128 and Greengenes v13.5 at ranks up to phylum (7,804 conflicts), indicating that the annotation error rate in these databases is ∼17%.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: not found
          • Article: not found

          Comparison of phylogenetic trees

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Horizontal gene transfer, genome innovation and evolution.

            To what extent is the tree of life the best representation of the evolutionary history of microorganisms? Recent work has shown that, among sets of prokaryotic genomes in which most homologous genes show extremely low sequence divergence, gene content can vary enormously, implying that those genes that are variably present or absent are frequently horizontally transferred. Traditionally, successful horizontal gene transfer was assumed to provide a selective advantage to either the host or the gene itself, but could horizontally transferred genes be neutral or nearly neutral? We suggest that for many prokaryotes, the boundaries between species are fuzzy, and therefore the principles of population genetics must be broadened so that they can be applied to higher taxonomic categories.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains.

              The signing authors together with the journal Systematic and Applied Microbiology (SAM) have started an ambitious project that has been conceived to provide a useful tool especially for the scientific microbial taxonomist community. The aim of what we have called "The All-Species Living Tree" is to reconstruct a single 16S rRNA tree harboring all sequenced type strains of the hitherto classified species of Archaea and Bacteria. This tree is to be regularly updated by adding the species with validly published names that appear monthly in the Validation and Notification lists of the International Journal of Systematic and Evolutionary Microbiology. For this purpose, the SAM executive editors, together with the responsible teams of the ARB, SILVA, and LPSN projects (www.arb-home.de, www.arb-silva.de, and www.bacterio.cict.fr, respectively), have prepared a 16S rRNA database containing over 6700 sequences, each of which represents a single type strain of a classified species up to 31 December 2007. The selection of sequences had to be undertaken manually due to a high error rate in the names and information fields provided for the publicly deposited entries. In addition, from among the often occurring multiple entries for a single type strain, the best-quality sequence was selected for the project. The living tree database that SAM now provides contains corrected entries and the best-quality sequences with a manually checked alignment. The tree reconstruction has been performed by using the maximum likelihood algorithm RAxML. The tree provided in the first release is a result of the calculation of a single dataset containing 9975 single entries, 6728 corresponding to type strain gene sequences, as well as 3247 additional high-fquality sequences to give robustness to the reconstruction. Trees are dynamic structures that change on the basis of the quality and availability of the data used for their calculation. Therefore, the addition of new type strain sequences in further subsequent releases may help to resolve certain branching orders that appear ambiguous in this first release. On the web sites: www.elsevier.de/syapm and www.arb-silva.de/living-tree, the All-Species Living Tree team will release a regularly updated database compatible with the ARB software environment containing the whole 16S rRNA dataset used to reconstruct "The All-Species Living Tree". As a result, the latest reconstructed phylogeny will be provided. In addition to the ARB file, a readable multi-FASTA universal sequence editor file with the complete alignment will be provided for those not using ARB. There is also a complete set of supplementary tables and figures illustrating the selection procedure and its outcome. It is expected that the All-Species Living Tree will help to improve future classification efforts by simplifying the selection of the correct type strain sequences. For queries, information updates, remarks on the dataset or tree reconstructions shown, a contact email address has been created (living-tree@arb-silva.de). This provides an entry point for anyone from the scientific community to provide additional input for the construction and improvement of the first tree compiling all sequenced type strains of all prokaryotic species for which names had been validly published.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                12 June 2018
                2018
                : 6
                : e5030
                Affiliations
                Sonoma, CA, USA
                Author information
                http://orcid.org/0000-0001-7355-2541
                Article
                5030
                10.7717/peerj.5030
                6003391
                29910992
                55b4c244-d55e-420e-a542-7f3efee9d4b5
                © 2018 Edgar

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 12 April 2018
                : 31 May 2018
                Funding
                The author received no funding for this work.
                Categories
                Bioinformatics
                Microbiology
                Taxonomy

                taxonomy,microbiology,bioinformatics
                taxonomy, microbiology, bioinformatics

                Comments

                Comment on this article