+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Paclitaxel induces acute pain via directly activating toll like receptor 4

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Paclitaxel, a powerful anti-neoplastic drug, often causes pathological pain, which significantly reduces the quality of life in patients. Paclitaxel-induced pain includes pain that occurs immediately after paclitaxel treatment (paclitaxel-associated acute pain syndrome, P-APS) and pain that persists for weeks to years after cessation of paclitaxel treatment (paclitaxel induced chronic neuropathic pain). Mechanisms underlying P-APS remain unknown. In this study, we found that paclitaxel causes acute pain in rodents in a dose-dependent manner. The paclitaxel-induced acute pain occurs within 2 hrs after a single intravenous injection of paclitaxel. This is accompanied by low levels of paclitaxel penetrating into the cerebral spinal fluid and spinal dorsal horn. We demonstrated that an intrathecal injection of paclitaxel induces mechanical allodynia in a dose-dependent manner. Paclitaxel causes activation of toll like receptor 4 (TLR4) in the spinal dorsal horn and dorsal root ganglions. Through activating TLR4, paclitaxel increases glutamatergic synaptic activities and reduces glial glutamate transporter activities in the dorsal horn. Activations of TLR4 are necessary in the genesis of paclitaxel-induced acute pain. The cellular and molecular signaling pathways revealed in this study could provide rationales for the development of analgesics and management strategies for P-APS in patients.

          Related collections

          Most cited references 92

          • Record: found
          • Abstract: found
          • Article: not found

          Glutamate uptake.

           Niels Danbolt (2001)
          Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
            • Record: found
            • Abstract: not found
            • Article: not found

            Pathological and protective roles of glia in chronic pain.

            Glia have emerged as key contributors to pathological and chronic pain mechanisms. On activation, both astrocytes and microglia respond to and release a number of signalling molecules, which have protective and/or pathological functions. Here we review the current understanding of the contribution of glia to pathological pain and neuroprotection, and how the protective, anti-inflammatory actions of glia are being harnessed to develop new drug targets for neuropathic pain control. Given the prevalence of chronic pain and the partial efficacy of current drugs, which exclusively target neuronal mechanisms, new strategies to manipulate neuron-glia interactions in pain processing hold considerable promise.
              • Record: found
              • Abstract: found
              • Article: not found

              Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs.

              Microglia are the resident macrophage-like population in the CNS. Microglia remain quiescent until injury or infection activates the cells to perform effector inflammatory and APC functions. Our previous studies have shown that microglia infected with a neurotropic strain of Theiler's murine encephalomyelitis virus secreted innate immune cytokines and up-regulated costimulatory molecules and MHC class II, enabling the cells to present viral and myelin Ags to CD4+ T cells. Recently, TLRs have been shown to recognize pathogen-associated molecular patterns and initiate innate immune responses upon interaction with infectious agents. We examined TLR expression on brain microglia and their functional responses upon stimulation with various TLR agonists. We report that mouse microglia express mRNA for all of the recently identified TLRs, TLR1-9, used for recognition of bacterial and viral molecular patterns. Furthermore, stimulation of quiescent microglia with various TLR agonists, including LPS (TLR4), peptidoglycan (TLR2), polyinosinic-polycytidylic acid (TLR3), CpG DNA (TLR9), and infection with viable Theiler's murine encephalomyelitis virus, activated the cells to up-regulate unique patterns of innate and effector immune cytokines and chemokines at the mRNA and protein levels. In addition, TLR stimulation activated up-regulation of MHC class II and costimulatory molecules, enabling the microglia to efficiently present myelin Ags to CD4+ T cells. Thus, microglia appear to be a unique and important component of both the innate and adaptive immune response, providing the CNS with a means to rapidly and efficiently respond to a wide variety of pathogens. Copyright 2004 The American Association of Immunologists, Inc.

                Author and article information

                [ ]Department of Pharmaceutical and Biomedical Sciences, The University of Georgia College of Pharmacy, 250 West Green Street, Athens, 30602 GA USA
                [ ]Department of Cardiovascular Medicine, The Third Hospital of Wuhan, Wuhan, 430060 Hubei Province China
                Mol Pain
                Mol Pain
                Molecular Pain
                BioMed Central (London )
                11 March 2015
                11 March 2015
                : 11
                © Yan et al.; licensee BioMed Central. 2015

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

                Custom metadata
                © The Author(s) 2015

                Molecular medicine

                taxol, nociception, drg, neuroinflammation, epsc, burrowing behavior


                Comment on this article