9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Interaction of polyamines, abscisic acid and proline under osmotic stress in the leaves of wheat plants

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The exact relationship between polyamine, abscisic acid and proline metabolisms is still poorly understood. In the present study, the effects of putrescine and abscisic acid treatments alone or in combination with polyethylene glycol-induced osmotic stress were investigated in young wheat plants. It was observed that abscisic acid plays a role in the coordinated regulation of the proline and polyamine biosynthetic pathways, which compounds are related to each other through a common precursor. Abscisic acid pre-treatment induced similar alteration of polyamine contents as the osmotic stress, namely increased the putrescine, but decreased the spermidine contents in the leaves. These changes were mainly related to the polyamine cycle, as both the synthesis and peroxisomal oxidation of polyamines have been induced at gene expression level. Although abscisic acid and osmotic stress influenced the proline metabolism differently, the highest proline accumulation was observed in the case of abscisic acid treatments. The proline metabolism was partly regulated independently and not in an antagonistic manner from polyamine synthesis. Results suggest that the connection, which exists between polyamine metabolism and abscisic acid signalling leads to the controlled regulation and maintenance of polyamine and proline levels under osmotic stress conditions in wheat seedlings.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Identification and validation of reference genes for quantitative RT-PCR normalization in wheat

            Background Usually the reference genes used in gene expression analysis have been chosen for their known or suspected housekeeping roles, however the variation observed in most of them hinders their effective use. The assessed lack of validated reference genes emphasizes the importance of a systematic study for their identification. For selecting candidate reference genes we have developed a simple in silico method based on the data publicly available in the wheat databases Unigene and TIGR. Results The expression stability of 32 genes was assessed by qRT-PCR using a set of cDNAs from 24 different plant samples, which included different tissues, developmental stages and temperature stresses. The selected sequences included 12 well-known HKGs representing different functional classes and 20 genes novel with reference to the normalization issue. The expression stability of the 32 candidate genes was tested by the computer programs geNorm and NormFinder using five different data-sets. Some discrepancies were detected in the ranking of the candidate reference genes, but there was substantial agreement between the groups of genes with the most and least stable expression. Three new identified reference genes appear more effective than the well-known and frequently used HKGs to normalize gene expression in wheat. Finally, the expression study of a gene encoding a PDI-like protein showed that its correct evaluation relies on the adoption of suitable normalization genes and can be negatively affected by the use of traditional HKGs with unstable expression, such as actin and α-tubulin. Conclusion The present research represents the first wide screening aimed to the identification of reference genes and of the corresponding primer pairs specifically designed for gene expression studies in wheat, in particular for qRT-PCR analyses. Several of the new identified reference genes outperformed the traditional HKGs in terms of expression stability under all the tested conditions. The new reference genes will enable more accurate normalization and quantification of gene expression in wheat and will be helpful for designing primer pairs targeting orthologous genes in other plant species.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functions of amine oxidases in plant development and defence.

              Copper amine oxidases and flavin-containing amine oxidases catalyse the oxidative de-amination of polyamines, which are ubiquitous compounds essential for cell growth and proliferation. Far from being only a means of degrading cellular polyamines and, thus, contributing to polyamine homeostasis, amine oxidases participate in important physiological processes through their reaction products. In plants, the production of hydrogen peroxide (H(2)O(2)) deriving from polyamine oxidation has been correlated with cell wall maturation and lignification during development as well as with wound-healing and cell wall reinforcement during pathogen invasion. As a signal molecule, H(2)O(2) derived from polyamine oxidation mediates cell death, the hypersensitive response and the expression of defence genes. Furthermore, aminoaldehydes and 1,3-diaminopropane from polyamine oxidation are involved in secondary metabolite synthesis and abiotic stress tolerance.
                Bookmark

                Author and article information

                Contributors
                pal.magda@agrar.mta.hu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                27 August 2018
                27 August 2018
                2018
                : 8
                : 12839
                Affiliations
                [1 ]ISNI 0000 0001 2159 124X, GRID grid.417760.3, Department of Plant Physiology, , Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, ; 2462 Martonvásár, POB 19., Hungary
                [2 ]ISNI 0000 0001 2097 3094, GRID grid.410344.6, Department of Photosynthesis, Institute of Plant Physiology and Genetics, , Bulgarian Academy of Sciences, ; 1113 Sofia, Acad. G. Bonchev Street, Bldg. 21, Bulgaria
                Author information
                http://orcid.org/0000-0003-3468-962X
                Article
                31297
                10.1038/s41598-018-31297-6
                6110863
                30150658
                55b62b8a-b548-4160-83c2-115ff39dd2e7
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 January 2018
                : 13 August 2018
                Funding
                Funded by: Hungarian National Scientific Research Foundation (K124472)
                Funded by: Hungarian National Scientific Research Foundation (K124472) and the Hungarian-Bulgarian bilateral programme (NKM-22/2017)
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article