157
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Creativity and the default network: A functional connectivity analysis of the creative brain at rest

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present research used resting-state functional magnetic resonance imaging (fMRI) to examine whether the ability to generate creative ideas corresponds to differences in the intrinsic organization of functional networks in the brain. We examined the functional connectivity between regions commonly implicated in neuroimaging studies of divergent thinking, including the inferior prefrontal cortex and the core hubs of the default network. Participants were prescreened on a battery of divergent thinking tests and assigned to high- and low-creative groups based on task performance. Seed-based functional connectivity analysis revealed greater connectivity between the left inferior frontal gyrus (IFG) and the entire default mode network in the high-creative group. The right IFG also showed greater functional connectivity with bilateral inferior parietal cortex and the left dorsolateral prefrontal cortex in the high-creative group. The results suggest that the ability to generate creative ideas is characterized by increased functional connectivity between the inferior prefrontal cortex and the default network, pointing to a greater cooperation between brain regions associated with cognitive control and low-level imaginative processes.

          Highlights

          • Participants completed divergent thinking tasks and resting-state fMRI

          • Higher creative ability was related to greater rs-fc in the IFG and default network

          • Seed-to-voxel analysis further revealed greater rs-fc in the IFG and DLPFC

          • Controlled and spontaneous processes may cooperate more in the creative brain

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          A default mode of brain function.

          A baseline or control state is fundamental to the understanding of most complex systems. Defining a baseline state in the human brain, arguably our most complex system, poses a particular challenge. Many suspect that left unconstrained, its activity will vary unpredictably. Despite this prediction we identify a baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF. The OEF is defined as the ratio of oxygen used by the brain to oxygen delivered by flowing blood and is remarkably uniform in the awake but resting state (e.g., lying quietly with eyes closed). Local deviations in the OEF represent the physiological basis of signals of changes in neuronal activity obtained with functional MRI during a wide variety of human behaviors. We used quantitative metabolic and circulatory measurements from positron-emission tomography to obtain the OEF regionally throughout the brain. Areas of activation were conspicuous by their absence. All significant deviations from the mean hemisphere OEF were increases, signifying deactivations, and resided almost exclusively in the visual system. Defining the baseline state of an area in this manner attaches meaning to a group of areas that consistently exhibit decreases from this baseline, during a wide variety of goal-directed behaviors monitored with positron-emission tomography and functional MRI. These decreases suggest the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The human brain is intrinsically organized into dynamic, anticorrelated functional networks.

            During performance of attention-demanding cognitive tasks, certain regions of the brain routinely increase activity, whereas others routinely decrease activity. In this study, we investigate the extent to which this task-related dichotomy is represented intrinsically in the resting human brain through examination of spontaneous fluctuations in the functional MRI blood oxygen level-dependent signal. We identify two diametrically opposed, widely distributed brain networks on the basis of both spontaneous correlations within each network and anticorrelations between networks. One network consists of regions routinely exhibiting task-related activations and the other of regions routinely exhibiting task-related deactivations. This intrinsic organization, featuring the presence of anticorrelated networks in the absence of overt task performance, provides a critical context in which to understand brain function. We suggest that both task-driven neuronal responses and behavior are reflections of this dynamic, ongoing, functional organization of the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence for a frontoparietal control system revealed by intrinsic functional connectivity.

              Two functionally distinct, and potentially competing, brain networks have been recently identified that can be broadly distinguished by their contrasting roles in attention to the external world versus internally directed mentation involving long-term memory. At the core of these two networks are the dorsal attention system and the hippocampal-cortical memory system, a component of the brain's default network. Here spontaneous blood-oxygenation-level-dependent (BOLD) signal correlations were used in three separate functional magnetic resonance imaging data sets (n = 105) to define a third system, the frontoparietal control system, which is spatially interposed between these two previously defined systems. The frontoparietal control system includes many regions identified as supporting cognitive control and decision-making processes including lateral prefrontal cortex, anterior cingulate cortex, and inferior parietal lobule. Detailed analysis of frontal and parietal cortex, including use of high-resolution data, revealed clear evidence for contiguous but distinct regions: in general, the regions associated with the frontoparietal control system are situated between components of the dorsal attention and hippocampal-cortical memory systems. The frontoparietal control system is therefore anatomically positioned to integrate information from these two opposing brain systems.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neuropsychologia
                Neuropsychologia
                Neuropsychologia
                Pergamon Press
                0028-3932
                1873-3514
                1 November 2014
                November 2014
                : 64
                : 92-98
                Affiliations
                [a ]Department of Psychology, University of North Carolina at Greensboro, USA
                [b ]Department of Psychology, University of Graz, Austria
                [c ]Music Research Institute, University of North Carolina at Greensboro, USA
                [d ]Joint School of Nanoscience and Nanoengineering, Greensboro, USA
                Author notes
                [* ]Corresponding author. rebeaty@ 123456uncg.edu
                Article
                S0028-3932(14)00324-8
                10.1016/j.neuropsychologia.2014.09.019
                4410786
                25245940
                55bb3351-9683-4f2c-a79a-61d3ce2a8b90
                © 2014 The Authors
                History
                : 10 May 2014
                : 10 September 2014
                : 11 September 2014
                Categories
                Article

                Neurology
                creative cognition,default mode network,divergent thinking,resting-state functional connectivity,inferior frontal gyrus

                Comments

                Comment on this article