8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Implications of Aging in Plastic Surgery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Supplemental Digital Content is available in the text.

          Summary:

          Given the rapidly aging population, investigating the effect of age on plastic surgery outcomes is imperative. Despite this, the topic has received relatively little attention. Furthermore, there appears to be little integration between the basic scientists investigating the mechanisms of aging and the plastic surgeons providing the majority of “antiaging” therapies. This review first provides a description of the effects and mechanisms of aging in 5 types of tissue: skin, adipose tissue, muscles, bones and tendons, and nervous tissue followed by an overview of the basic mechanisms underlying aging, presenting the currently proposed cellular and molecular theories. Finally, the impact of aging, as well as frailty, on plastic surgery outcomes is explored by focusing on 5 different topics: general wound healing and repair of cutaneous tissue, reconstruction of soft tissue, healing of bones and tendons, healing of peripheral nerves, and microsurgical reconstruction. We find mixed reports on the effect of aging or frailty on outcomes in plastic surgery, which we hypothesize to be due to exclusion of aged and frail patients from surgery as well as due to outcomes that reported no postsurgical issues with aged patients. As plastic surgeons continue to interact more with the growing elderly population, a better appreciation of the underlying mechanisms and outcomes related to aging and a clear distinction between chronological age and frailty can promote better selection of patients, offering appropriate patients surgery to improve an aged appearance, and declining interventions in inappropriate patients.

          Related collections

          Most cited references105

          • Record: found
          • Abstract: found
          • Article: not found

          Senescent cells: an emerging target for diseases of ageing

          Chronological age represents the single greatest risk factor for human disease. One plausible explanation for this correlation is that mechanisms that drive ageing might also promote age-related diseases. Cellular senescence, which is a permanent state of cell cycle arrest induced by cellular stress, has recently emerged as a fundamental ageing mechanism that also contributes to diseases of late life, including cancer, atherosclerosis and osteoarthritis. Therapeutic strategies that safely interfere with the detrimental effects of cellular senescence, such as the selective elimination of senescent cells (SNCs) or the disruption of the SNC secretome, are gaining significant attention, with several programmes now nearing human clinical studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic Potential of NAD-Boosting Molecules: The In Vivo Evidence

            Nicotinamide adenine dinucleotide (NAD), the cell’s hydrogen carrier for redox enzymes, is well known for its role in redox reactions. More recently, it has emerged as a signaling molecule. By modulating NAD + sensing enzymes, it controls hundreds of key processes from energy metabolism to cell survival, rising and falling depending on food intake, exercise and the time of day. NAD + levels steadily decline with age, resulting in altered metabolism and increased disease susceptibility. Restoration of NAD + levels in old or diseased animals can promote health and extend lifespan, prompting a search for safe and efficacious NAD-boosting molecules. Such molecules hold the promise of increasing the body’s resilience, not just to one disease, but to many, thereby extending healthy human lifespan. Nicotinamide adenine nucleotide (NAD+) has emerged as a key regulator of cellular processes that control the body’s response to stress. Rajman et al. discuss NAD boosters, small molecules that raise NAD+ levels, which are now considered to be highly promising for the treatment of multiple diseases and the potential extension of human lifespan.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stem cell aging: mechanisms, regulators and therapeutic opportunities.

              Aging tissues experience a progressive decline in homeostatic and regenerative capacities, which has been attributed to degenerative changes in tissue-specific stem cells, stem cell niches and systemic cues that regulate stem cell activity. Understanding the molecular pathways involved in this age-dependent deterioration of stem cell function will be critical for developing new therapies for diseases of aging that target the specific causes of age-related functional decline. Here we explore key molecular pathways that are commonly perturbed as tissues and stem cells age and degenerate. We further consider experimental evidence both supporting and refuting the notion that modulation of these pathways per se can reverse aging phenotypes. Finally, we ask whether stem cell aging establishes an epigenetic 'memory' that is indelibly written or one that can be reset.
                Bookmark

                Author and article information

                Journal
                Plast Reconstr Surg Glob Open
                Plast Reconstr Surg Glob Open
                GOX
                Plastic and Reconstructive Surgery Global Open
                Wolters Kluwer Health
                2169-7574
                January 2019
                14 January 2019
                : 7
                : 1
                : e2085
                Affiliations
                From the [* ]Division of Plastic Surgery, Brigham and Women’s Hospital, Boston, Mass
                []Division of Endocrinology, Brigham and Women’s Hospital, Boston, Mass.
                Author notes
                Indranil Sinha, MD, Harvard Medical School, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115, E-mail: isinha@ 123456bwh.harvard.edu
                Article
                00023
                10.1097/GOX.0000000000002085
                6382222
                30859042
                55bef054-1a11-4c1d-80f2-06ec2f5b92f2
                Copyright © 2019 The Authors. Published by Wolters Kluwer Health, Inc. on behalf of The American Society of Plastic Surgeons.

                This is an open access article distributed under the Creative Commons Attribution License 4.0 (CCBY), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 August 2018
                : 26 October 2018
                Categories
                Special Topic
                Custom metadata
                TRUE
                T

                Comments

                Comment on this article