+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Circular RNA circNHSL1 promotes gastric cancer progression through the miR-1306-3p/SIX1/vimentin axis

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Mounting evidences indicate that circular RNAs (circRNAs) play vital roles in the development and progression of various cancers. However, the detail functions and underlying mechanisms of circRNAs in gastric cancer remain largely unknown.


          The expression profile of metastasis-related circRNAs was screened by RNA-seq analysis. qRT-PCR was used to determine the level and prognostic values of circNHSL1 in gastric cancer tissues. In vitro cell wound healing and transwell (migration and invasion) and in vivo tumorigenesis and metastasis assays were performed to evaluate the functions of circNHSL1. Luciferase reporter, RNA immunoprecipitation (RIP) and rescued assays were employed to confirm the interactions between circNHSL1, miR-1306-3p and SIX1. It’s widely accepted that as a mesenchymal marker, Vimentin promotes invasion and metastasis in various cancers. Luciferase reporter assay was used to determine the regulation of SIX1 on Vimentin. In addition, In situ hybridization (ISH) was performed to detect the level and prognostic values of miR-1306-3p.


          We found that the level of circNHSL1 was significantly up-regulated in gastric cancer, and positively correlated with clinicopathological features and poor prognosis of patients with gastric cancer. Functionally, circNHSL1 promoted cell mobility and invasion, as well as in vivo tumorgenesis and metastasis. Mechanistically, circNHSL1 acted as a miR-1306-3p sponge to relieve the repressive effect of miR-1306-3p on its target SIX1. Moreover, SIX1 enhanced Vimentin expression in the transcriptional level through directly binding to the promoter domain of Vimentin, thereby promoting cell migration and invasion. In addition, miR-1306-3p was down-regulated and negatively correlated with pathological features and poor prognosis in gastric cancer.


          CircNHSL1 promotes gastric cancer progression through miR-1306-3p/SIX1/Vimentin axis, and may serve as a novel diagnostic marker and target for treatment of gastric cancer patients.

          Electronic supplementary material

          The online version of this article (10.1186/s12943-019-1054-7) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references 46

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer statistics in China, 2015.

          With increasing incidence and mortality, cancer is the leading cause of death in China and is a major public health problem. Because of China's massive population (1.37 billion), previous national incidence and mortality estimates have been limited to small samples of the population using data from the 1990s or based on a specific year. With high-quality data from an additional number of population-based registries now available through the National Central Cancer Registry of China, the authors analyzed data from 72 local, population-based cancer registries (2009-2011), representing 6.5% of the population, to estimate the number of new cases and cancer deaths for 2015. Data from 22 registries were used for trend analyses (2000-2011). The results indicated that an estimated 4292,000 new cancer cases and 2814,000 cancer deaths would occur in China in 2015, with lung cancer being the most common incident cancer and the leading cause of cancer death. Stomach, esophageal, and liver cancers were also commonly diagnosed and were identified as leading causes of cancer death. Residents of rural areas had significantly higher age-standardized (Segi population) incidence and mortality rates for all cancers combined than urban residents (213.6 per 100,000 vs 191.5 per 100,000 for incidence; 149.0 per 100,000 vs 109.5 per 100,000 for mortality, respectively). For all cancers combined, the incidence rates were stable during 2000 through 2011 for males (+0.2% per year; P = .1), whereas they increased significantly (+2.2% per year; P < .05) among females. In contrast, the mortality rates since 2006 have decreased significantly for both males (-1.4% per year; P < .05) and females (-1.1% per year; P < .05). Many of the estimated cancer cases and deaths can be prevented through reducing the prevalence of risk factors, while increasing the effectiveness of clinical care delivery, particularly for those living in rural areas and in disadvantaged populations.
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer statistics, 2018

            Each year, the American Cancer Society estimates the numbers of new cancer cases and deaths that will occur in the United States and compiles the most recent data on cancer incidence, mortality, and survival. Incidence data, available through 2014, were collected by the Surveillance, Epidemiology, and End Results Program; the National Program of Cancer Registries; and the North American Association of Central Cancer Registries. Mortality data, available through 2015, were collected by the National Center for Health Statistics. In 2018, 1,735,350 new cancer cases and 609,640 cancer deaths are projected to occur in the United States. Over the past decade of data, the cancer incidence rate (2005-2014) was stable in women and declined by approximately 2% annually in men, while the cancer death rate (2006-2015) declined by about 1.5% annually in both men and women. The combined cancer death rate dropped continuously from 1991 to 2015 by a total of 26%, translating to approximately 2,378,600 fewer cancer deaths than would have been expected if death rates had remained at their peak. Of the 10 leading causes of death, only cancer declined from 2014 to 2015. In 2015, the cancer death rate was 14% higher in non-Hispanic blacks (NHBs) than non-Hispanic whites (NHWs) overall (death rate ratio [DRR], 1.14; 95% confidence interval [95% CI], 1.13-1.15), but the racial disparity was much larger for individuals aged <65 years (DRR, 1.31; 95% CI, 1.29-1.32) compared with those aged ≥65 years (DRR, 1.07; 95% CI, 1.06-1.09) and varied substantially by state. For example, the cancer death rate was lower in NHBs than NHWs in Massachusetts for all ages and in New York for individuals aged ≥65 years, whereas for those aged <65 years, it was 3 times higher in NHBs in the District of Columbia (DRR, 2.89; 95% CI, 2.16-3.91) and about 50% higher in Wisconsin (DRR, 1.78; 95% CI, 1.56-2.02), Kansas (DRR, 1.51; 95% CI, 1.25-1.81), Louisiana (DRR, 1.49; 95% CI, 1.38-1.60), Illinois (DRR, 1.48; 95% CI, 1.39-1.57), and California (DRR, 1.45; 95% CI, 1.38-1.54). Larger racial inequalities in young and middle-aged adults probably partly reflect less access to high-quality health care. CA Cancer J Clin 2018;68:7-30. © 2018 American Cancer Society.
              • Record: found
              • Abstract: found
              • Article: not found

              Circular RNAs are a large class of animal RNAs with regulatory potency.

              Circular RNAs (circRNAs) in animals are an enigmatic class of RNA with unknown function. To explore circRNAs systematically, we sequenced and computationally analysed human, mouse and nematode RNA. We detected thousands of well-expressed, stable circRNAs, often showing tissue/developmental-stage-specific expression. Sequence analysis indicated important regulatory functions for circRNAs. We found that a human circRNA, antisense to the cerebellar degeneration-related protein 1 transcript (CDR1as), is densely bound by microRNA (miRNA) effector complexes and harbours 63 conserved binding sites for the ancient miRNA miR-7. Further analyses indicated that CDR1as functions to bind miR-7 in neuronal tissues. Human CDR1as expression in zebrafish impaired midbrain development, similar to knocking down miR-7, suggesting that CDR1as is a miRNA antagonist with a miRNA-binding capacity ten times higher than any other known transcript. Together, our data provide evidence that circRNAs form a large class of post-transcriptional regulators. Numerous circRNAs form by head-to-tail splicing of exons, suggesting previously unrecognized regulatory potential of coding sequences.

                Author and article information

                13381758371 ,
                Mol Cancer
                Mol. Cancer
                Molecular Cancer
                BioMed Central (London )
                22 August 2019
                22 August 2019
                : 18
                ISNI 0000 0004 0368 8293, GRID grid.16821.3c, Department of General Surgery, Shanghai General Hospital, , Shanghai Jiaotong University School of Medicine, ; 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600 China
                © The Author(s). 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

                Funded by: FundRef, National Natural Science Foundation of China;
                Award ID: 817725276
                Award Recipient :
                Funded by: Science and Technology Commission of Shanghai Municipality (CN)
                Award ID: 20161425
                Award Recipient :
                Funded by: Shanghai Jiaotong University Medical Cross Fund
                Award ID: YG2017MS28
                Award Recipient :
                Funded by: Shanghai Municipal Science and Technology Committee
                Award ID: 14411966800
                Award Recipient :
                Funded by: the Techpool Fund
                Award ID: UF201419
                Award Recipient :
                Custom metadata
                © The Author(s) 2019

                Oncology & Radiotherapy

                circnhsl1, mir-1306-3p, six1, vimentin, metastasis, gastric cancer


                Comment on this article