39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Inflammatory Microenvironment in Colorectal Neoplasia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Colorectal cancer (CRC) is a major cause of mortality and morbidity worldwide. Inflammatory activity within the stroma of invasive colorectal tumours is known to be a key predictor of disease activity with type, density and location of immune cells impacting on patient prognosis. To date, there has been no report of inflammatory phenotype within pre-malignant human colonic adenomas. Assessing the stromal microenvironment and particularly, inflammatory activity within colorectal neoplastic lesions is central to understanding early colorectal carcinogenesis. Inflammatory cell infiltrate was assessed by immunohistochemistry in paired colonic adenoma and adjacent normal colonic mucosa samples, and adenomas exhibiting increasing degrees of epithelial cell dysplasia. Macrophage phenotype was assessed using double stain immunohistochemistry incorporating expression of an intracellular enzyme of function. A targeted array of inflammatory cytokine and receptor genes, validated by RT-PCR, was used to assess inflammatory gene expression. Inflammatory cell infiltrates are a key feature of sporadic adenomatous colonic polyps with increased macrophage, neutrophil and T cell (specifically helper and activated subsets) infiltration in adenomatous colonic polyps, that increases in association with characteristics of high malignant potential, namely, increasing degree of cell dysplasia and adenoma size. Macrophages within adenomas express iNOS, suggestive of a pro-inflammatory phenotype. Several inflammatory cytokine genes ( CXCL1, CXCL2, CXCL3, CCL20, IL8, CCL23, CCL19, CCL21, CCL5) are dysregulated in adenomas. This study has provided evidence of increased inflammation within pre-malignant colonic adenomas. This may allow potential mechanistic pathways in the initiation and promotion of early colorectal carcinogenesis to be identified.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          A genetic model for colorectal tumorigenesis.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.

            The matrix metalloproteinase MMP-9/gelatinase B is upregulated in angiogenic dysplasias and invasive cancers of the epidermis in a mouse model of multi-stage tumorigenesis elicited by HPV16 oncogenes. Transgenic mice lacking MMP-9 show reduced keratinocyte hyperproliferation at all neoplastic stages and a decreased incidence of invasive tumors. Yet those carcinomas that do arise in the absence of MMP-9 exhibit a greater loss of keratinocyte differentiation, indicative of a more aggressive and higher grade tumor. Notably, MMP-9 is predominantly expressed in neutrophils, macrophages, and mast cells, rather than in oncogene-positive neoplastic cells. Chimeric mice expressing MMP-9 only in cells of hematopoietic origin, produced by bone marrow transplantation, reconstitute the MMP-9-dependent contributions to squamous carcinogenesis. Thus, inflammatory cells can be coconspirators in carcinogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model.

              Angiogenesis is a hallmark of malignant neoplasias, as the formation of new blood vessels is required for tumors to acquire oxygen and nutrients essential for their continued growth and metastasis. However, the signaling pathways leading to tumor vascularization are not fully understood. Here, using a transplantable mouse tumor model, we have demonstrated that endogenous IFN-beta inhibits tumor angiogenesis through repression of genes encoding proangiogenic and homing factors in tumor-infiltrating neutrophils. We determined that IFN-beta-deficient mice injected with B16F10 melanoma or MCA205 fibrosarcoma cells developed faster-growing tumors with better-developed blood vessels than did syngeneic control mice. These tumors displayed enhanced infiltration by CD11b+Gr1+ neutrophils expressing elevated levels of the genes encoding the proangiogenic factors VEGF and MMP9 and the homing receptor CXCR4. They also expressed higher levels of the transcription factors c-myc and STAT3, known regulators of VEGF, MMP9, and CXCR4. In vitro, treatment of these tumor-infiltrating neutrophils with low levels of IFN-beta restored expression of proangiogenic factors to control levels. Moreover, depletion of these neutrophils inhibited tumor growth in both control and IFN-beta-deficient mice. We therefore suggest that constitutively produced endogenous IFN-beta is an important mediator of innate tumor surveillance. Further, we believe our data help to explain the therapeutic effect of IFN treatment during the early stages of cancer development.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                7 January 2011
                : 6
                : 1
                : e15366
                Affiliations
                [1 ]Gastrointestinal Research Group, School of Medicine and Dentistry, Aberdeen University, Aberdeen, United Kingdom
                [2 ]Department of Pathology, Aberdeen University, Aberdeen, United Kingdom
                [3 ]Colorectal Surgery Unit, Western General Hospital, Edinburgh, United Kingdom
                [4 ]Biomathematics and Statistics Scotland, The Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, United Kingdom
                [5 ]The Rowett Institute of Nutrition and Health, Aberdeen University, Aberdeen, United Kingdom
                Vanderbilt University Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: MHM EEO GIM. Performed the experiments: MHM KNS JED NF GLH JT MH. Analyzed the data: GN CM MHM EEO GIM JED JT NAGM. Contributed reagents/materials/analysis tools: MHM GIM KNS NF JT JED. Wrote the paper: MHM EEO GIM.

                Article
                PONE-D-10-02300
                10.1371/journal.pone.0015366
                3017541
                21249124
                55c23d96-3183-4d1a-a7f0-ce94b5e96683
                McLean et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 September 2010
                : 11 November 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                Medicine
                Gastroenterology and Hepatology
                Colon
                Oncology
                Cancers and Neoplasms
                Gastrointestinal Tumors
                Colonic Polyps

                Uncategorized
                Uncategorized

                Comments

                Comment on this article