4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Anti-biofilm surfaces from mixed dopamine-modified polymer brushes: synergistic role of cationic and zwitterionic chains to resist staphyloccocus aureus

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dominant amount of antifouling D-PSBMA with a minor amount of bactericidal D-PQAs facilitate the synergistic anti-biofilm effect.

          Abstract

          Infections resulting from the attachment of bacteria and biofilm formation on the surface of medical implants give rise to a severe problem for medical device safety. Thus, the development of antibacterial materials that integrate bactericidal and antifouling properties is a promising approach to prevent biomaterial-associated infections. In this study, two types of dopamine-modified polymers, dopamine-terminated quaternary ammonium salt polymer (D-PQAs) with various lengths of N-alkyl chain (D-PQA4C, D-PQA8C, and D-PQA12C) and dopamine-terminated poly(sulfobetaine methacrylate) (D-PSBMA), were synthesized via atom transfer radical polymerization (ATRP). Mixed polymer brushes of D-PQAs and D-PSBMA with various ratios were well-integrated onto the surface of a silicon wafer via a facile mussel-inspired adhesion. We demonstrate that the synergistic antibacterial effect depends on both the ratio of the two components and the surface structures of the mixed polymer brushes, originating from the interactions between D-PQAs and D-PSBMA. The N-alkyl chain length of D-PQAs influenced the distribution and orientation of the alkyl chain on the mixed polymer brushes. A chart of the antibacterial efficiency of the mixed polymer brushes was obtained to reveal the synergistic role of their cationic and zwitterionic chains to resist S. aureus. The dominant amount of antifouling D-PSBMA with a minor amount of bactericidal D-PQAs with a short N-alkyl chain length facilitated the synergistic antibacterial effect. The selected polymer brushes (PSBMA/PQA4C-10%, PSBMA/PQA4C-30%, and PSBMA/PQA8C-10%) could effectively prevent biofilm formation by S. aureus for a long time, while having good biocompatibility. This work may provide a universal design strategy for the preparation of anti-biofilm and biocompatible surfaces for biomedical applications.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms.

          The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Understanding biofilm resistance to antibacterial agents.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antibacterial surfaces: the quest for a new generation of biomaterials

              In this review we attempt to clarify the notion of what is meant by the term antibacterial surfaces and categorise the approaches that are commonly used in the design of antibacterial surfaces. Application of surface coatings and the modification of the surface chemistry of substrata are generally considered to be a chemical approach to surface modification (as are surface polymerisation, functionalisation, and derivatisation), whereas, modification of the surface architecture of a substrate can be considered a physical approach. Here, the antifouling and bactericidal effects of antibacterial surfaces are briefly discussed. Finally, several recent efforts to design a new generation of antibacterial surfaces, which are based on mimicking the surface nanotopography of natural surfaces, are considered. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                BSICCH
                Biomaterials Science
                Biomater. Sci.
                Royal Society of Chemistry (RSC)
                2047-4830
                2047-4849
                November 19 2019
                2019
                : 7
                : 12
                : 5369-5382
                Affiliations
                [1 ]College of Polymer Science and Engineering
                [2 ]State Key Laboratory of Polymer Materials Engineering
                [3 ]Sichuan University
                [4 ]Chengdu 610065
                [5 ]China
                Article
                10.1039/C9BM01275C
                31621697
                55c81274-40e2-4add-b032-08167da4242c
                © 2019

                http://rsc.li/journals-terms-of-use

                History

                Comments

                Comment on this article