22
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Mineralocorticoids and Glucocorticoids Cooperatively Increase Salt Intake and Angiotensin II Receptor Binding in Rat Brain

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mineralocorticoids, such as deoxycorticosterone acetate (DOCA), and angiotensin II (AngII) act synergistically in the brain to elicit salt appetite. Glucocorticoids, such as dexamethasone (DEX), also may enhance the behavioral effects of DOCA and AngII. However, the brain regions involved in these behavioral interactions have not been elucidated. This study tested the hypothesis that DEX potentiates the effects of DOCA on AngII binding, especially at the AT1 receptor. We confirmed that DEX potentiated the effects of DOCA on salt appetite. Concomitantly, steroid-specific and region-specific changes in AT1 binding were noted. Specifically, in the hypothalamic paraventricular nucleus, treatment with DEX or DOCA + DEX increased AT1 binding. In the subfornical organ (SFO) and area postrema, there was an increase in AT1 binding when both steroids were combined, but not when given individually. However, there was no change in AT2 binding in any brain region studied and no change in AT1 or AT2 binding to either receptor subtype in the pituitary. The results indicate that DOCA and DEX may increase the sensitivity of the brain to the behavioral and physiological actions of AngII by upregulating AT1 receptors in the SFO and area postrema.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Blood, pituitary, and brain renin-angiotensin systems and regulation of secretion of anterior pituitary gland.

          W F Ganong (1993)
          In addition to increasing blood pressure, stimulating aldosterone and vasopressin secretion, and increasing water intake, angiotensin II affects the secretion of anterior pituitary hormones. Some of these effects are direct. There are angiotensin II receptors on lactotropes and corticotropes in rats, and there may be receptors on thyrotropes and other secretory cells. Circulating angiotensin II reaches these receptors, but angiotensin II is almost certainly generated locally by the pituitary renin-angiotensin system as well. There are also indirect effects produced by the effects of brain angiotensin II on the secretion of hypophyseotropic hormones. In the anterior pituitary of the rat, the gonadotropes contain renin, angiotensin II, and some angiotensin-converting enzyme. There is debate about whether these cells also contain small amounts of angiotensinogen, but most of the angiotensinogen is produced by a separate population of cells and appears to pass in a paracrine fashion to the gonadotropes. An analogous situation exists in the brain. Neurons contain angiotensin II and probably renin, but most angiotensin-converting enzyme is located elsewhere and angiotensinogen is primarily if not solely produced by astrocytes. Angiotensin II causes secretion of prolactin and adrenocorticotropic hormone (ACTH) when added to pituitary cells in vitro. Paracrine regulation of prolactin secretion by angiotensin II from the gonadotropes may occur in vitro under certain circumstances, but the effects of peripheral angiotensin II on ACTH secretion appear to be mediated via the brain and corticotropin-releasing hormone (CRH). In the brain, there is good evidence that locally generated angiotensin II causes release of norepinephrine that in turn stimulates gonadotropin-releasing hormone-secreting neurons, increasing circulating luteinizing hormone. In addition, there is evidence that angiotensin II acts in the arcuate nuclei to increase the secretion of dopamine into the portal-hypophyseal vessels, inhibiting prolactin secretion. Central as well as peripheral angiotensin II increases CRH secretion, but there is little if any evidence that angiotensin II mediates the ACTH responses to other stressful stimuli.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Effect of mineralocorticoids on spontaneous sodium chloride appetite of adrenalectomized rats

                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                1999
                May 1999
                20 May 1999
                : 69
                : 5
                : 339-351
                Affiliations
                aInstitute of Neurological Sciences and Departments of bPsychology and cAnimal Biology, University of Pennsylvania, Philadelphia, Pa., USA
                Article
                54436 Neuroendocrinology 1999;69:339–351
                10.1159/000054436
                10343175
                55c848da-0285-4356-a8e9-8554eaa1e63d
                © 1999 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                Page count
                Figures: 8, Tables: 1, References: 84, Pages: 13
                Categories
                Regulation of Corticotropin and Adrenal Steroid Feed-Back

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Angiotensin receptors,Salt appetite,Adrenal steroids,Autoradiography

                Comments

                Comment on this article